Vol. 38, issue 01, article # 2

Musikhin I. D., Kapustin V. V., Movchan A. K., Poznaharev E. S., Kuryachy M. I., Tislenko A. A., Zabuga S. A. Influence of inhomogeneous optical radiation propagation media on the accuracy of space depth mapping by multi-zone active-pulse television measuring systems. // Optika Atmosfery i Okeana. 2025. V. 38. No. 01. P. 15–23. DOI: 10.15372/AOO20250102 [in Russian].
Copy the reference to clipboard

Abstract:

The paper evaluates the effect of backscattering interference (BI) on the forms of measuring functions of active pulse television measuring systems (AP TMS) in terms of range. Methods for retrieving the shape of the AP TMS range measuring function in translucent media have been developed. To minimize the effect of BI, methods of calculating and subtracting coefficients, as well as a method of removing the constant component of the spectrum are suggested. The proposed methods were tested with 30 experimental video record obtained in a large aerosol chamber (LAC) for two multi-zone range measurement methods and five meteorological media. The best result was achieved when using the method of calculating and subtracting coefficients for video record with the operation of AP TMS in the multi-area range measuring mode (MARMM): the average SD was reduced by 4.5 times.

Keywords:

inhomogeneous medium optical radiation propagation, active pulse television measuring system, normalized depth map, retrieval of measuring function form

References:

1. Lebed'ko E.G. Sistemy impul'snoi opticheskoi lokatsii. SPb.: Lan', 2014. 368 p.
2. Alant'ev D.V., Borzov S.M., Kozik V.I., Potaturkin O.I., Uzilov S.B., Yaminov  K.R. Eksperimental'noe issledovanie metoda lazernoi impul'snoi lokatsii dlya obnaruzheniya svetovozvrashchayushchikh ob"ektov // Avtometriya. 2021. V. 57, N 1. P. 103–111. DOI: 10.15372/AUT20210111.
3. Golitsyn A.V. Povyshenie effektivnosti lazernogo lokatora opticheskikh sistem // Izv. vuzov. Priborostroenie. 2009. V. 52, N 6. P. 18–21.
4. Avdochenko B.I., Zaitseva E.V., Kirpichenko Yu.R., Kuryachii M.I., Pustynskii I.N. Korrektsiya iskazhenii videosignala v aktivno-impul'snykh televizionnykh sistemakh // Dokl. TUSUR. 2015. V. 36, N 2. P. 19–24.
5. Mishchenko N.I. Trekhmernye aktivno-impul'snye sistemy nablyudeniya i izmereniya parametrov ob"ektov // Dokl. TUSUR. 2017. V. 20, N 3. P. 119–123. DOI: 10.21293/1818-04422017-20-3-119-123.
6. Göhler B., Lutzmann P. Review on short-wavelength infrared laser gated-viewing at Fraunhofer IOSB // Opt. Eng. 2017. V. 56, N 3. P. 031203. DOI: 10.1117/1.OE.56.3.031203.
7. Kabashnikov V.P., Kuntsevich B.F. Prostranstvennoe raspredelenie signalov aktivno-impul'snykh sistem videniya ot ob"ektov na malykh rasstoyaniyakh // Zhurn. prikl. spektroskop. 2021. V. 88, N 1. P. 137–143.
8. Xinwei W., Youfu L., Yan Z. Triangular-range-intensity profile spatial-correlation method for 3D super-resolution range-gated imaging // Appl. Opt. 2013. V. 52, N 30. P. 7399–7406. DOI: 10.1364/AO.52.007399.
9. Gruber T., Kokhova M., Ritter W., Haala N., Dietmayer K. Learning super-resolved depth from active gated imaging // 21st International Conference on Intelligent Transportation Systems (ITSC). 2018. P. 3051–3058. DOI: 10.1109/ITSC.2018.8569590.
10. Chua S.Y., Wang X., Guo N., Tan C.S., Chai T.Y., Seet G.L. Improving three-dimensional (3D) range gated reconstruction through time-of-flight (TOF) imaging analysis // J. Eur. Opt. Soc.: Rapid Publ. 2016. V. 11. P. 16015. DOI: 10.2971/jeos.2016.16015.
11. Wang X., Li Y., Zhou Y. Multi-pulse time delay integration method for flexible 3D super-resolution range-gated imaging // Opt. Express. 2015. V. 23. P. 7820–7831. DOI: 10.1364/OE.23.007820.
12. Kapustin V.V., Zahlebin A.S., Movchan A.K., Kuryachiy M.I., Krutikov M.V. Experimental assessment of the distance measurement accuracy using the active-pulse television measuring system and a digital terrain model // Comput. Opt. 2022. V. 46, N 6. P. 948–954. DOI: 10.18287/2412-6179-CO-1114.
13. Wang X., Cao Y., Cui W., Liu X., Fan S., Zhou Y., Li Y. Three-dimensional range-gated flash LIDAR for land surface remote sensing // Land Surface Remote Sensing II. 2014. V. 9260. P. 858–867. DOI: 10.1117/12.2074906.
14. Kapustin V.V., Movchan A.K., Tislenko A.A. Experimental evaluation of the accuracy of range measurement with multiarea methods using an active-pulse television measuring system // Optoelectron. Instrum. Proc. 2024. V. 60. P. 145–155. DOI: 10.3103/S8756699024700134.
15. Movhan A.K., Kapustin V.V., Kuryachiy M.I., Movchan E.S. Multi-Area Method of a depth map building with gain modulation in active-pulse television measuring systems // international siberian conference on control and Communications (SIBCON). IEEE, 2022. P. 1–6. DOI: 10.1109/SIBCON56144.2022.10002872.
16. Christnacher F., Schertzer S., Metzger N., Bacher E., Laurenzis M., Habermacher R. Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments // Opt. Express. 2015. V. 23, N 26. P. 32897–32908. DOI: 10.1364/OE.23.032897.
17. Belov V.V., Gridnev Yu.V., Kapustin V.V., Kozlov V.S., Kudryavtsev A.N., Kuryachii M.I., Movchan A.K., Rakhimov R.F., Panchenko M.V., Shmargunov V.P. Eksperimental'naya otsenka chastotno-kontrastnykh kharakteristik aktivno-impul'snykh televizionnykh sistem videniya v usloviyakh povyshennoi mutnosti aerozol'nykh sred // Optika atmosf. i okeana. 2018. V. 31, N 9. P. 771–775. DOI: 10.15372/AOO20180912; Belov V.V., Gridnev Yu.V., Kapustin V.V., Kozlov V.S., Kudryavtsev A.N., Kuryachii M.I., Movchan A.K., Rakhimov R.F., Panchenko M.V., Shmargunov V.P. Experimental estimation of frequency-contrast characteristics of active pulsed television systems under conditions of enhanced turbidity of aerosol media // Atmos. Ocean. Opt. 2019. V. 32, N 1. P. 103–108.
18. Martynov V.L., Ksenofontov Yu.G., Skripnik I.L. Vliyanie pomekhi obratnogo rasseyaniya na effektivnost' infotelekommunikatsii pri provedenii podvodnogo poiska // Morskie intellektual'nye tekhnologii. 2020. V. 49, N 3–1. P. 142–148.
19. Kostylev N.M., Kolyuchkin V.Ya. Otsenka vliyaniya pomekhi obratnogo rasseyaniya na effektivnost' raboty podvodnykh sistem nablyudeniya // Prikladnaya optika 2022: Sb. tez. XV Mezhdunarodnoy nauchnoy konferentsii. SPb.: OOO Skifiya-print, 2023. P. 190.
20. Kuntsevich B.F. Uchet pomekhi obratnogo rasseyaniya izlucheniya podsvetki v aktivno-impul'snykh sistemakh videniya // XXVI Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya po fotoelektronike i priboram nochnogo videniya: tez. dokl. M.: Aktsionernoe obshchestvo «NPO „Orion“», 2022. P. 357–359.
21. Karasik V.E., Orlov V.M. Lokatsionnye lazernye sistemy videniya. M.: Izd-vo MGTU, 2013. 478 p.
22. Aerozol'nye kamery. URL: https://iao.ru/ru/about/resources/equip/acams (data obrashcheniya: 06.06.2024).
23. Mariani P., Quincoces I., Haugholt K.H., Chardard Y., Visser A.W., Yates C., Piccinno G., Reali G., Risholm P., Thielemann J.T. Range-gated imaging system for underwater monitoring in ocean environment // Sustainability. 2019. V. 11. P. 162. DOI: 10.3390/su11010162.