Vol. 37, issue 12, article # 9

Ignatov R. Yu., Nahaev M. I., Rubinshtein K. G., Tsepelev V. Yu., Shaposhnikov D. S., Obukhov D. Yu., Rodin A. V., Sedov A. V. A system for predicting the transport of pollutants in the atmosphere for Russian regions. // Optika Atmosfery i Okeana. 2024. V. 37. No. 12. P. 1053–1060. DOI: 10.15372/AOO20241209 [in Russian].
Copy the reference to clipboard

Abstract:

A system has been created for numerical prediction of concentrations of pollutants in the atmosphere and their deposition to the ground using the Chimere chemical transport model, which takes into account emissions from stationary, emergency, and mobile sources. The forecast of meteorological fields was carried out using the regional high-resolution non-hydrostatic atmospheric model WRF-ARW. The system is fully automated, which allows it to be used as a tool for quickly obtaining operational information in the work of situation centers and decision-making centers in the cases of industrial, natural, and man-made emergencies. The results of testing the system showed its operability, the possibility of using it in operational and research work, as well as in scenarios of development of emergency situations anywhere in the country and implementation of measures to assess and eliminate the consequences of accidents. The first results of the calculation of atmospheric pollution with the system are presented. They can be considered as test. To obtain statistically reliable results, it is necessary to have longer series of measurements of atmospheric pollution concentrations and of higher resolution.

Keywords:

simulation of atmospheric pollution, chemical transport model, transfer of accidental emissions, atmospheric model

Figures:

References:

1. Kukkonen J., Olsson T., Schultz D.M., Baklanov A., Klein T., Miranda A.I., Monteiro A., Hirtl M., Tarvainen V., Boy M., Peuch V.-H., Poupkou A., Kioutsioukis I., Finardi S., Sofiev M., Sokhi R., Lehtinen K.E.J., Karatzas K., San José R., Astitha M., Kallos G., Schaap M., Reimer E., Jakobs H., Eben K. A review of operational, regional-scale, chemical weather forecasting models in Europe // Atmos. Chem. Phys. 2012. V. 12, N 1. P. 1–87. DOI: 10.5194/acp-12-1-2012.
2. Nakhaev M.I., Berezin E.V., Shalygina I.YU., Kuznetsova I.N., Konovalov I.B., Blinov D.V. Prognozirovanie kontsentratsii zagryaznyayushchikh veshchestv v atmosfere s primeneniem khimicheskoi transportnoi modeli CHIMERE i modeli COSMO-Ru7 // Trudy Gidromettsentra Rossii. 2015. Iss. 357. P. 146–164.
3. Kuznetsova I.N., Shalygina I.Yu., Nakhaev M.I., Tkacheva Yu.V., Rivin G.S., Kirsanov A.A., Borisov D.V., Lezina E.A. Sistema prognozirovaniya kachestva vozdukha na osnove khimicheskikh transportnykh modelei // Gidrometeorolog. issled. i prognozy. 2019. N 4 (374). P. 203–218.
4. Skamarock W.C., Klemp J.B., Dudhia J., Gill D., Barker D., Duda M., Huang X.-Y., Wang W., Powers J.G. Description of the Advanced Research WRF Version 3, NCAR Technical Note. DOI: 10.5065/D68S4MVH.
5. He C., Valayamkunnath P., Barlage M., Chen F., Gochis D., Cabell R., Schneider T., Rasmussen R., Niu G.-Y., Yang Z.-L., Niyogi D., Ek M. NCAR IS SPONSORED BY THE NSF, 2023: The community Noah–MP land surface modeling system technical description Version 5.0 No. NCAR/TN-575+STR. 284 p. DOI: 10.5065/ew8g-yr95.
6. Thompson G., Field P., Rasmussen R., Hall W. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization // Mon. Weather Rev. 2008. V. 136. P. 5095–5115. DOI: 10.1175/ 2008MWR2387.1.
7. Iacono M.J., Delamere J.S., Mlawer E.J., Shephard M.W., Clough S.A., Collins W.D. Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models // J. Geophys. Res. 2008. V. 113. P. D13103. DOI: 10.1029/2008JD009944.
8. Park S., Bretherton C.S. A new moist turbulence parameterization in the Community Atmosphere Model // J. Clim. 2009. V. 22. P. 3422–3448. DOI: 10.1175/2008JCLI2556.1.
9. Jimenez P.A., Dudhia J., Gonzalez–Rouco J.F., Navarro J., Montavez J.P., Garcia–Bustamante E. A revised scheme for the WRF surface layer formulation // Mon. Weather Rev. 2012. V. 140. P. 898–918. DOI: 10.1175/MWR-D-11-00056.1.
10. Niu G.-Y., Yang Z.-L., Mitchell K.E., Chen F., Ek M.B., Barlage M., Kumar A., Manning K., Niyogi D., Rosero E., Tewari M., Xia Y. The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local–scale measurements // J. Geophys. Res. 2011. V. 116. P. D12109. DOI: 10.1029/2010JD015139.
11. Yang Z.-L., Niu G.-Y., Mitchell K.E., Chen F., Ek M.B., Barlage M., Longuevergne L., Manning K., Niyogi D., Tewari M., Xia Y. The community Noah land surface model with Multiparameterization options (Noah–MP): 2. Evaluation over global river basins // J. Geophys. Res. 2011. V. 116. P. D12110. DOI: 10.1029/2010JD015140.
12. Grell G.A., Devenyi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques // Geophys. Res. Lett. 2002. V. 29. P. 1693. DOI: 10.1029/2002GL015311.
13. Wesely M. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models // Atmos. Environ. 1989. V. 23. P. 1293–1304.
14. Grell G.A. Prognostic evaluation of assumptions used by cumulus parameterizations // Mon. Weather Rev. 1993. V. 121. P. 764–787. DOI: 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.
15. Emberson L.-D., Simpson D., Tuovinen J.-P., Ashmore M.-R., Cambridge H.-M. Towards a model of ozone deposition and stomatal uptake over Europe. Technical report, 2000. EMEP/MSC-W 2000.
16. Rukovodyashchii dokument RD 52.27.724–2019 Nastavlenie po kratkosrochnym prognozam pogody obshchego naznacheniya. M.: Tipografiya AMA-PRESS, 2019. 66 p.
17. Federal'nyi informatsionno-issledovatel'skii tsentr Rosgidrometa. URL: https://www.feerc.ru/baikal/ru/ monitoring/air/ask_overall (last access: 02.02.2024).
18. Krasnopolsky V.M. The Application of Neural Networks in the Earth System Sciences: Neural Networks Emulations for Complex Multidimensional Mappings. Springer, 2013. 206 p. DOI: 10.1007/978-94-007-6073-8.
19. Bykov F.L. Statisticheskaya korrektsiya prognozov pogody po modeli COSMO s pomoshch'yu neironnykh setei // Meteorol. i gidrol. 2020. N 3. P. 5–20.
20. Kuznetsova I.N., Nakhaev M.I., Kirsanov A.A., Borisov D.V., Tkacheva Yu.V., Rivin G.S., Lezina E.A. Testirovanie i perspektivy tekhnologii prognozirovaniya zagryazneniya vozdukha s primeneniem khimicheskikh transportnykh modelei CHIMERE i COSMO-Ru2ART // Gidrometeorol. issled. i prognozy. 2022. N 4. P. 147–170. DOI: 10.37162/2618-9631-2022-4-6-29.