Vol. 37, issue 12, article # 6

Аntokhin P. N., Arshinova V. G., Arshinov M. Yu., Aryasov V. E., Belan B. D., Belan S. B., Davydov D. K., Ivlev G. A., Kozlov A. V., Panov A. V., Prokushkin A. S., Putilin I. R., Rasskazchikova T. M., Savkin D. E., Simonenkov D. V., Tolmachev G. N., Fofonov A. V. Comparison of greenhouse gas fluxes derived from measurements carried out by means of equipment suites of the Yakovlev-40 aircraft laboratory and ZOTTO Observatory. // Optika Atmosfery i Okeana. 2024. V. 37. No. 12. P. 1028–1034. DOI: 10.15372/AOO20241206 [in Russian].
Copy the reference to clipboard

Abstract:

The ongoing global warming leads to the need for continuous monitoring of greenhouse gas concentrations and the magnitude of their fluxes. Gas exchange between terrestrial ecosystems and the atmosphere is mainly measured using eddy covariance, gradient, and chamber methods. This work compares greenhouse gas fluxes measured using the airborne eddy covariance technique and by means of the gas analysis system and meteorological sensors at the ZOTTO observatory. A description of instrument suites of the aircraft laboratory and observatory is presented. The comparison results showed that CO2 and CH4 fluxes measured by two different methods at the same altitudes coincide in sign, are close to each other in value for carbon dioxide, and differ by up to 2 times for methane. The results are of interest to specialists who study greenhouse gas fluxes using the eddy covariance method.

Keywords:

atmosphere, vertical distribution, eddy covariance, carbon dioxide, methane, flux

Figures:

References:

1. Glagolev M.V. K metodu «obratnoi zadachi» dlya opredeleniya poverkhnostnoi plotnosti potoka gaza iz pochvy // Dinamika okrujayushchei sredy i global'nye izmeneniya klimata. 2010. V. 1, N 1. P. 17–36.
2. Riederer M., Serafimovich A., Foken T. Net ecosystem CO2 exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions // Atmos. Meas. Tech. 2014. V. 7, N 4. P. 1057–1064. DOI: 10.5194/amtd-6-8783-2013.
3. Falge E., Baldocchi D., Tenhunen J., Aubinet M., Bakwin P., Berbigier P., Bernhofer C., Burba G., Clement R., Davis K.J., Elbers J.A., Goldstein A.H., Grelle A., Granier A., Guomundsson J., Hollinger D., Kowalski A.S., Katul G., Law B.E., Malhi Y., Meyers T., Monson R.K., Munger J.W., Oechel W., Paw K.T., Pilegaard K., Rannik U., Rebmann C., Suyker A., Valentini R., Wilson K., Wofsy S. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements // Agric. For. Meteorol. 2002. V. 113, N 1–4. P. 53–74.
4. Desjardins R.L., Brach E.J., Alno P., Schuepp P.H. Aircraft monitoring of surface carbon dioxide exchange // Science. 1982. V. 216, N 4547. P. 733–735.
5. Lenschow D.H., Pearson Jr., R., Stankov B.B. Estimating the ozone budget in the boundary layer by use of aircraft measurements of ozone eddy flux and mean concentration // J. Geophys. Res. 1981. V. 86. P. 7291–7297.
6. Sun Y., Ma J., Sude B., Lin X., Shang H., Geng B., Diao Z., Du J., Quan Z. A UAV-based eddy covariance system for measurement of mass and energy exchange of the ecosystem: Preliminary results // Sensors. 2021. V. 21. P. 403. DOI: 10.3390/s21020403.
7. Global monitoring laboratory. USA. https://gml. noaa.gov/ccgg/aircraft/index.html (last access: 20.04.2024).
8. Erland B.M., Adams C., Darlington A., Smith M.L., Thorpe A.K., Wentworth G.R., Conley S., Liggio J., Li S.-M., Miller C.E., Gamon J.A. Comparing airborne algorithms for greenhouse gas flux measurements over the Alberta oil sands // Atmos. Meas. Tech. 2022. V. 15, N 19. P. 5841–5859. DOI: 10.5194/amt-2022-120.
9. Белан Б.Д., Антохин П.Н., Аршинов М.Ю., Белан С.Б., Давыдов Д.К., Ивлев Г.А., Козлов А.В., Пестунов Д.А., Савкин Д.Е., Симоненков Д.В., Толмачев Г.Н., Фофонов А.В. Самолет лаборатория ЯК-40 для измерения потоков парниковых газов. Патент на полезную модель № 228158 от 16.08.2024.
10. Wendisch M., Brenguier J.-L. (ed) Airborne Measurements for Environmental Research. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. 655 p.
11. Mahrt L. Flux sampling errors for aircraft and towers // J. Atmos. Ocean. Technol. 1998. V. 15. P. 416–429. DOI: 10.1175/1520-0426(1998)015<0416:FSEFAA>2.0.CO;2.
12. Prueger J.H., Hatfield J.L., Kustas W.P., Hipps L.E., Macpherson J.I., Neale C.M.U., Eichinger W.E., Cooper D.I., Parkin T.B. Tower and aircraft eddy covariance measurements of water vapor, energy, and carbon dioxide fluxes during SMACEX // J. Hydrometeorol. 2005. V. 6, N 12. P. 954–960. DOI: 10.1175/JHM457.1.
13. Belan B.D., Ancellet G., Andreeva I.S., Antokhin P.N., Arshinova V.G., Arshinov M.Y., Balin Y.S., Barsuk V.E., Belan S.B., Chernov D.G., Davydov D.K., Fofonov A.V., Ivlev G.A., Kotel'nikov S.N., Kozlov A.S., Kozlov A.V., Law K., Mikhal'chishin A.V., Moseikin I.A., Nasonov S.V., Nédélec P., Okhlopkova O.V., Ol'kin S.E., Panchenko M.V., Paris J.-D., Penner I.E., Ptashnik I.V., Rasskazchikova T.M., Reznikova I.K., Romanovskii O.A., Safatov A.S., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Yakovlev S.V., Zenkova P.N. Integrated airborne investigation of the air composition over the Russian sector of the Arctic // Atmos. Meas. Tech. 2022. V. 15, N 13. P. 3941–3967. DOI: 10.5194/amt-15-3941-2022.
14. Winderlich J., Chen H., Gerbig C., Seifert T., Kolle O., Lavrič J.V., Kaiser C., Höfer A., Heimann M. Continuous low-maintenance CO2/CH4/H2O measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia // Atmos. Meas. Tech. 2010. V. 3, N 4. P. 1113–1128. DOI: 10.5194/amt-3-1113-2010.
15. Vorob'ev V.I. Sinopticheskaya meteorologiya. L.: Gidrometeoizdat, 1991. 616 p.
16. Belan B.D. Dinamika sloya peremeshivaniya po aerozol'nym dannym // Optika atmosf. i okeana. 1994. V. 7, N 8. P. 1045–1054.
17. Balin Yu.S., Ershov A.D. Vertikal'naya struktura aerozol'nykh polei pogranichnogo sloya atmosfery po dannym lazernogo zondirovaniya // Optika atmosf. i okeana. 1999. V. 12, N 7. P. 616–623.
18. Tremblay A., Roehm C., Varfalvy L., Garneau M. Greenhouse Gas Emissions – Fluxes and Processes. Berlin: Springer, 2005. 732 p.
19. Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. USA, 2013. 331 p.
20. Sayres D.S., Dobosy R., Healy C., Dumas E., Kochendorfer J., Munster J., Wilkerson J., Baker B., Anderson J.G. Arctic regional methane fluxes by ecotope as derived using eddy covariance from a low-flying aircraft // Atmos. Chem. Phys. 2017. V. 17, N 13. P. 8619–8633. DOI: 10.5194/acp-17-8619-2017.
21. Yuan B., Kaser L., Karl T., Graus M., Peischl J., Campos T.L., Shertz S., Apel E.C., Hornbrook R.S., Hills A., Gilman J.B., Lerner B.M., Warneke C., Flocke F.M., Ryerson T.B., Guenther A.B., de Gouw J.A. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions // J. Geophys. Res.: Atmos. 2015. V. 120, N 12. P. 6271–6289. DOI: 10.1002/2015JD023242.
22. Shaw J.T., Allen G., Barker P., Pitt J.R., Pasternak D., Bauguitte S.J.-B., Lee J., Bower K.N., Daly M.C., Lunt M.F., Ganesan A.L., Vaughan A.R., Chibesakunda F., Lambakasa M., Fisher R.E., France J.L., Lowry D., Palmer P.I., Metzger S., Parker R.J., Gedney N., Bateson P., Cain M., Lorente A., Borsdorff T., Nisbet E.G. Large methane emission fluxes observed from tropical wetlands in Zambia // Global Biogeochem. Cycl. 2022. V. 36, N 6. P. e2021GB007261. DOI: 10.1029/2021GB007261.
23. Zulueta R.C., Oechel W.C., Verfaillie J.G., Hastings S.J., Gioli B., Lawrence W.T. Aircraft regional-scale flux measurements over complex landscapes of mangroves, desert, and marine ecosystems of Magdalena Bay, Mexico // J. Atmos. Ocean. Technol. 2013. V. 30, N 7. P. 1266–1294. DOI: 10.1175/JTECH-D-12-00022.1.
24. Loechli M., Stephens B.B., Commane R., Chevallier F., McKain K., Keeling R.F., Morgan E.J., Patra P.K., Sargent M.R., Sweeney C., Keppel-Aleks G. Evaluating northern hemisphere growing season net carbon flux in climate models using aircraft observations // Global Biogeochem. Cycl. 2023. V. 37, N 2. P. E2022GB007520. DOI: 10.1029/2022GB007520.
25. Desjardins R.L., Worth D.E., MacPherson J.I., Bastian M., Srinivasan R. Flux measurements by the NRC Twin Otter atmospheric research aircraft: 1987–2011 // J. Adv. Sci. Res. 2016. V. 13. P. 43–49. DOI: 10.5194/asr-13-43-2016.
26. Font A., Grimmond C.S.B., Kotthaus S., Morguí J.-A., Stockdale C., O'Connor E., Priestman M., Barratt B. Daytime CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in Greater London // Environ. Pollut. 2015. V. 196. P. 98–106. DOI: 10.1016/j.envpol.2014.10.001.
27. O’Shea S.J., Allen G., Fleming Z.L., Bauguitte S.J.-B., Percival C.J., Gallagher M.W., Lee J., Helfter C., Nemitz E. Area fluxes of carbon dioxide, methane, and carbon monoxide derived from airborne measurements around Greater London: A case study during summer 2012 // J. Geophys. Res.: Atmos. 2014. V. 119, N 8. P. 4940–4952. DOI: 10.1002/2013JD021269.
28. Foken T. Micrometeorology. Berlin Heidelberg: Springer-Verlag, 2006. 320 p.
29. Viterbo P., Beljaars A, Mahfouf J.-F., Teixeira J. The representation of soil moisture freezing and its impact on the stable boundary layer // Q. J. R. Meteorol. Soc. 1999. V. 125, N 559. P. 2401–2426.
30. Wang X., Wang C., Bond-Lamberty B. Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis // Agric. Forest Meteorol. 2017. V. 247. P. 93–103. DOI: 10.1016/j.agrformet.2017.07.023.
31. Wang K., Liu C., Zheng X., Pihlatie M., Li B., Haapanala S., Vesala T., Liu H., Wang Y., Liu G., Hu F. Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields // Biogeoscie. 2013. V. 10, N 11. P. 6865–6877. DOI: 10.5194/bgd-10-8467-2013.
32. Almand-Hunter B.B., Walker J.T., Masson N.P., Hafford L., Hannigan M.P. Development and validation of inexpensive, automated, dynamic flux chambers //
33. Atmos. Meas. Tech. 2015. V. 8, N 1. P. 267–280. DOI: 10.5194/amt-8-267-2015.
34. You Y., Staebler R.M., Moussa S.G., Beck J., Mittermeier R.L. Methane emissions from an oil sands tailings pond: a quantitative comparison of fluxes derived by different methods // Atmos. Meas. Tech. 2021. V. 14, N 3. P. 1879–1892. DOI: 10.5194/amt-14-1879-2021.
35. Gioli B., Miglietta F., De Martino B., Hutjes R.W.A., Dolman H.A.J., Lindroth A., Schumacher M., Sanz M.J., Manca G., Peressotti A., Dumas E.J. Comparison between tower and aircraft-based eddy covariance fluxes in five European regions // Agric. Forest Meteorol. 2004. V. 127, N 1. P. 1–16. DOI: 10.1016/j.agrformet.2004.08.004.
36. Hannun R.A., Wolfe G.M., Kawa S.R., Hanisco T.F., Newman P.A., Alfieri J.G., Barrick J., Clark K.L., DiGangi J.P., Diskin G.S., King J., Kustas W.P., Mitra B., Noormets A., Nowak J.B., Thornhill K.L., Vargas R. Spatial heterogeneity in CO2, CH4, and energy fluxes: Insights from airborne eddy covariance measurements over the Mid-Atlantic region // Environ. Res. Lett. 2020. V. 15, N 3. P. 035008. DOI: 10.1088/1748-9326/ab7391.