Vol. 37, issue 12, article # 3
Copy the reference to clipboard
Abstract:
The parameters of the spectral model of small-scale turbulence are the most important characteristics used to describe the propagation of light and sound in the atmosphere. One of the determining factors affecting the spectral composition of turbulence is the stratification regime. Based on the processing of time series of fluctuations of meteorological parameters recorded by acoustic weather stations, the effect of stratification of the surface air layer on the deviations of the turbulence spectrum from the Kolmogorov–Obukhov model is investigated. When comparing the time dynamics of the stability characteristic (Monin–Obukhov number) and the index of the power model of the spectrum of temperature fluctuations, a significant correlation between them is established. An empirical model of the dependence of the spectrum index on the stability parameter is proposed. The model makes it possible to estimate changes in the parameters of the spectral structure of small-scale turbulence based on estimates of the magnitude and direction of turbulent heat and momentum fluxes. The dependence reflects the features of generation of temperature turbulence with different stratification in the surface layer. Information on turbulent spectral parameters obtained on the basis of estimation of stratification can be further used to solve problems of propagation, of optical and acoustic as well as sounding of the atmosphere.
Keywords:
non-Kolmogorov turbulence, energy spectrum, stratification, Monin-Obukhov number, sonic weather stations
References:
1. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. M.: Nauka, 1965. Pt. I. 640 p.
2. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p.
3. Nosov V.V., Lukin V.P., Kovadlo P.G., Nosov E.V., Torgaev A.V. Opticheskie svoistva turbulentnosti v gornom pogranichnom sloe atmosfery. N.: Izd-vo SO RAN, 2016. 153 p.
4. Zilitinkevich S., Kadantsev E., Repina I., Mortikov E., Glazunov A. Order out of chaos: Shifting paradigm of convective turbulence // J. Atmos. Sci. 2021. V. 78. P. 3925–3932. DOI: 10.1175/JAS-D-21-0013.1.
5. Stull R.B. An Introduction to Boundary Layer Meteorology. Dordrecht: Kluwer Academic Publishers, 1988. 670 p.
6. Banerjee T., Katul G.G., Salesky S.T., Chamecki M. Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer // Q. J. R. Meteorol. Soc. 2014. V. 141, N 690. P. 1699–1711. DOI: 10.1002/qj.2472.
7. Toselli I., Gladysz S. On the general equivalence of the Fried parameter and coherence radius for non-Kolmogorov and oceanic turbulence // OSA Continuum. 2019. V. 2. P. 43–48. DOI: 10.1364/OSAC.2.000043.
8. Tan L., Du W., Ma J., Yu S., Han Q. Log-amplitude variance for a Gaussian-beam wave propagating through non-Kolmogorov turbulence // Opt. Express. 2010. V. 18, N 2. P. 451–462. DOI: 10.1364/OE.18.000451.
9. Nosov V.V., Kovadlo P.G., Lukin V.P., Torgaev A.V. Atmosfernaya kogerentnaya turbulentnost' // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 753–759; Nosov V.V., Kovadlo P.G., Lukin V.P., Torgaev A.V. Atmospheric coherent turbulence // Atmos. Ocean. Opt. 2013. V. 26, N 3. P. 201–206.
10. Marakasov D.A., Afanas'ev A.L., Gordeev E.V. Otsenka parametrov inertsionnogo intervala turbulentnogo spektra temperatury iz vremennykh ryadov dannykh akusticheskikh meteostantsii // Optika atmosf. i okeana. 2024. V. 37, N 3. P. 254–261. DOI: 10.15372/AOO20240309.
11. Azbukin A.A., Bogushevich A.YA., Il'ichevskii V.S., Korol'kov V.A., Tikhomirov A.A., Shchelevoi V.D. Avtomatizirovannyi ul'trazvukovoi meteorologicheskii kompleks AMK–03 // Meteorol. i gidrolog. 2006. N 11. P. 89–98.
12. Repina I.A. Eksperimental'nye issledovaniya vzaimodeistviya atmosfery i okeana v nestatsionarnykh usloviyakh: dis. ... d.f.-m.n. M., 2011. 358 p.
13. Gladkikh V.A., Mamyshev V.P., Nevzorova I.V., Odintsov S.L. Zavisimost' skorosti treniya ot skorosti vetra v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2021. V. 34, N 6. P. 453–457. DOI: 10.15372/AOO20210611; Gladkikh V.A., Mamyshev V.P., Nevzorova I.V., Odintsov S.L. Dependence of the friction speed on the wind speed in the surface air layer // Atmos. Ocean. Opt. 2021. V. 34, N 5. P. 507–512.
14. Tatarskii V.I. Rasprostranenie voln v turbulentnoi atmosfere. M.: Nauka, 1967. 548 p.
15. Isimaru A. Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh. M.: Mir, 1981. V. 2. 320 p.