Vol. 37, issue 12, article # 10
Copy the reference to clipboard
Abstract:
Cirrus clouds play an important role in formation of the climate of our planet, as far as they influence its radiation balance. Their study requires solving the problem of interpreting atmospheric laser sounding data, which is solved differently for clouds consisting of randomly oriented ice crystals and clouds containing layers of horizontally oriented crystals. In this article, within the framework of the physical optics method, light backscattering properties for horizontally oriented ice particles of cirrus clouds of the “plate”, “column” and “hollow column” type were numerically simulated. Simulations were carried out for particles ranging in size from 10 to 316 µm for wavelengths of 0.532 and 1.064 mm with refractive indexes for ice of 1.3116 + i1.48 × 10-9 and 1.3004 + i1.9 × 10-6. The solution was obtained for typical lidar tilt angles of 0, 0.3, 3, and 5°. The results are of interest for developing an optical model of cirrus clouds for interpreting atmospheric laser sounding data in case of cirrus clouds containing this types of particles.
Keywords:
light scattering, physical optics method, atmospheric ice crystal, cirrus cloud, horizontal orientation
Figures:
References:
1. Kokhanenko G.P., Balin Yu.S., Borovoi A.G., Novoselov M.M. Issledovaniya orientatsii kristallicheskikh chastits v ledyanykh oblakakh skaniruyushchim lidarom // Optika atmosf. i okeana. 2022. V. 35, N 4. P. 319–325. DOI: 10.15372/AOO20220412; Kokhanenko G.P., Balin Yu.S., Borovoi A.G., Novoselov M.M. Studies of the orientation of crystalline particles in ice clouds by a scanning lidar // Atmos. Ocean. Opt. 2022. V. 35, N 5. P. 509–516.
2. Balin Yu.S., Kaul' B.V., Kokhanenko G.P. Nablyudeniya zerkal'no otrazhayushchikh chastits i sloev v kristallicheskikh oblakakh // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 293–299.
3. Samokhvalov I.V., Bryukhanova V.V., Bryukhanov I.D., Doroshkevich A.A., Zhivotenyuk I.V., Volkov S.N., Kirillov N.S., Ni E.V., Stykon A.P., Loktyushin O.Yu. Obnaruzhenie v oblakakh verkhnego yarusa matrichnym polyarizatsionnym lidarom lokal'nykh oblastei gorizontal'no orientirovannykh ledyanykh chastits i issledovanie ikh kharakteristik // Aktual'nye problemy radiofiziki: 10-ya Mezhdunarodnaya nauchno-prakticheskaya konferentsiya, 26–29 srptember 2023 year, g. Tomsk: sb. trudov konferentsii. Tomsk: Izd. dom Tom. gos. un-ta, 2023. P. 201–203.
4. Veselovskii I.A., Korenskii M.Yu., Barchunov B.V., Kas'yanik N.I., Khudyakov D.V., Kolgotin A.V., Korneev D.S. Issledovanie atmosfernogo aerozolya lidarnymi metodami spektroskopii kombinatsionnogo rasseyaniya i lazerno-indutsirovannoi fluorestsentsii // Lazerno-informatsionnye tekhnologii: trudy XXX Mezhdunarodnoi nauchnoi konferentsii 12–17 september 2022 year, Novorossiisk: NF FGBOU VO «Belgorodskii gosudarstvennyi tekhnologicheskii universitet im. V.G. Shukhova», 2022. P. 153–154.
5. Sassen K., Zhu J., Benson S. Midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. IV. Optical displays // Appl. Opt. 2003. V. 42, N 3. P. 332–341. DOI: 10.1364/AO.42.000332.
6. Noel V., Sassen K. Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations // J. Appl. Meteorol. Climatol. 2005. V. 44. P. 653–664. DOI: 10.1175/JAM2223.1.
7. Hayman M., Spuler S., Morley B. Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain // Opt. Express. 2014. V. 22, N 14. P. 16976–16990. DOI: 10.1364/OE.22.016976.
8. Hayman M., Thayer J.P. General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices // J. Opt. Soc. Am. A. 2012. V. 29, N 4. P. 400–409. DOI: 10.1364/JOSAA.29.000400.
9. Reichardt J., Wandinger U., Klein V., Mattis I., Hilber B., Begbie R. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements // Appl. Opt. 2012. V. 51, N 34. P. 8111–8131. DOI: 10.1364/AO.51.008111.
10. Reichardt J., Reichardt S., Lin R.-F., Hess M., McGee T.J., Starr D.O. Optical-microphysical cirrus model // J. Geophys. Res. 2008. V. 113, D22201. DOI: 10.1029/2008JD010071.
11. Tinel C., Testud J., Pelon J., Hogan R.J., Protat A., Delanoë J., Bouniol D. The retrieval of ice-cloud properties from cloud radar and lidar synergy // J. Appl. Meteorol. Climatol. 2005. V. 44, N 6. P. 860–875. DOI: 10.1175/JAM2229.1.
12. Haeffelin M., Barthès L., Bock O., Boitel C., Bony S., Bouniol D., Chepfer H., Chiriaco M., Cuesta J., Delanoë J., Drobinski P., Dufresne J.-L., Flamant C., Grall M., Hodzic A., Hourdin F., Lapouge F., Lemaître Y., Mathieu A., Noël V., O'Hirok W., Pelon J., Pietras C., Protat A., Romand B., Scialom G., Vautard R. SIRTA, a ground-based atmospheric observatory for cloud and aerosol research // Ann. Geophys. 2005. V. 23, N 2. P. 253–275. DOI: 10.5194/angeo-23-253-2005.
13. Wang Z., Liu D., Xie C., Zhou J. An iterative algorithm to estimate LIDAR ratio for thin cirrus cloud over aerosol layer // J. Opt. Soc. Korea. 2011. V. 15, N 3. P. 209–215. DOI: 10.3807/JOSK.2011.15.3.209.
14. Wehr T., Kubota T., Tzeremes G., Wallace K., Nakatsuka H., Ohno Y., Koopman R., Rusli S., Kikuchi M., Eisinger M., Tanaka T., Taga M., Deghaye P., Tomita E., Bernaerts D. The EarthCARE mission – science and system overview // Atmos. Meas. Tech. 2023. V. 16, N 15. P. 3581–3608. DOI: 10.5194/amt-16-3581-2023.
15. Winker D.M., Pelon J., McCormick M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds // Proc. SPIE. 2003. V. 4893. DOI: 10.1117/12.466539.
16. Baum B.A., Yang P., Heymsfield A.J., Bansemer A., Cole B.H., Merrelli A., Schmitt C., Wang C. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 123–139. DOI: 10.1016/j.jqsrt.2014.02.029.
17. Baum B.A., Yang P., Heymsfield A.J., Schmitt C.G., Xie Y., Bansemer A., Hu Y.-X., Zhang Z. Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds // J. Appl. Meteor. Climatol. 2011. V. 50, N 5. P. 1037–1056. DOI: 10.1175/2010JAMC2608.1.
18. Zhou C., Yang P. Backscattering peak of ice cloud particles // Opt. Express. 2015. V. 23, N 9. P. 11995–12003. DOI: 10.1364/OE.23.011995.
19. Tkachev I.V., Timofeev D.N., Kustova N.V., Konoshonkin A.V. Bank dannykh matrits obratnogo rasseyaniya sveta na atmosfernykh ledyanykh kristallakh razmerami 10–100 mkm dlya interpretatsii dannykh lazernogo zondirovaniya // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 199–206. DOI: 10.15372/AOO20210306.
20. Yang P., Hioki S., Saito M., Kuo C.-P., Baum B., Liou K.-N. A Review of ice cloud optical property models for passive satellite remote sensing // Atmosphere. 2018. V. 9, N 12. P. 499. DOI: 10.3390/atmos9120499.
21. Konoshonkin A.V., Kustova N.V., Shishko V.A., Timofeev D.N., Kan N., Tkachev I.V., Borovoi A.G., Kokhanenko G.P., Balin Yu.S. Raschet signala skaniruyushchego lidara pri zondirovanii peristykh oblakov, soderzhashchikh preimushchestvenno gorizontal'no orientirovannye kristally // Optika atmosf. i okeana. 2023. V. 36, N 2. P. 116–121. DOI: 10.15372/AOO20230206.
22. Borovoi A., Balin Y., Kokhanenko G., Penner I., Konoshonkin A., Kustova N. Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar // Opt. Express. 2014. V. 22, N 20. P. 24566–24573. DOI: 10.1364/OE.22.024566.
23. Mishchenko M.I., Hovenier J.W., Travis L.D. Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications. San Diego: Academic Press, 1999. 690 p.
24. Kokhanenko G.P., Balin Y.S., Klemasheva M.G., Nasonov S.V., Novoselov M.M., Penner I.E., Samoilova S.V. Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the ice clouds // Atmos. Meas. Tech. 2020. V. 13, N 3. P. 1113–1127. DOI: 10.5194/amt-13-1113-2020.
25. Kokhanenko G.P., Balin Y.S., Klemasheva M.G., Nasonov S.V., Novoselov M.M., Penner I.E., Samoilova S.V. Study of crystalline particles with a pronounced horizontal orientation using a scanning lidar LOSA-M3 // Proc. SPIE. 2019. V. 11208. P. 112084 DOI: 10.1117/ 12.2540780.
26. Kustova N., Konoshonkin A., Kokhanenko G., Wang Z., Shishko V., Timofeev D., Borovoi A. Lidar backscatter simulation for angular scanning of cirrus clouds with quasi-horizontally oriented ice crystals // Opt. Lett. 2022. V. 47, N 15. P. 3648–3651. DOI: 10.1364/OL.463282.
27. Zhu X., Wang Z., Konoshonkin A., Kustova N., Shishko V., Timofeev D., Tkachev I., Liu D. Backscattering properties of randomly oriented hexagonal hollow columns for lidar application // Opt. Express. 2023. V. 31, N 21. P. 35257–35271. DOI: 10.1364/OE.502185.
28. Balin Yu.S., Kaul' B.V., Kokhanenko G.P. Nablyudenie zerkal'no otrazhayushchikh chastits i sloev v kristallicheskikh oblakakh // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 293–299.
29. Auer A.H., Veal D.L. The dimension of ice crystals in natural clouds // J. Atmos. Sci. 1970. V. 27. P. 919–926. DOI: 10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.
30. Heymsfield A. Ice crystal terminal velocities // J. Atmos. Sci. 1972. V. 29. P. 1348–1357. DOI: 10.1175/1520-0469(1972)029<1348:ICTV>2.0.CO;2.
31. Schmitt C.G., Heymsfield A.J. On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus // J. Atmos. Sci. 2007. V. 64. P. 4514–4519. DOI: 10.1175/2007JAS2317.1.
32. Konoshonkin A.V., Borovoi A.G., Kustova N.V., Shishko V.A., Timofeev D.N. Rasseyanie sveta na atmosfernykh ledyanykh kristallakh v priblizhenii fizicheskoi optiki. M.: FIZMATLIT, 2022. 384 p.