Vol. 37, issue 12, article # 1

Nevzorova T.A., Dudaryonok A. S., Lavrentieva N. N. Calculations of the SO2 line shift coefficients by CO2 pressure: the ν1 + ν3 band. // Optika Atmosfery i Okeana. 2024. V. 37. No. 12. P. 997–1002. DOI: 10.15372/AOO20241201 [in Russian].
Copy the reference to clipboard

Abstract:

The SO2 – CO2 line profile parameters are important to study the carbon dioxide atmospheres of terrestrial planets (Venus, Mars) and exoplanets. The carbon-dioxide shift coefficients of sulfur dioxide lines in ν1 + ν3 band are calculated at room temperature; the rotational quantum numbers J varies from 0 to 100 and Ka varies from 0 to 20. Calculations were made using a semi-empirical method, which includes a correction factor with adjustable parameters depending on the rotational quantum numbers. The calculated shift coefficients are in a good agreement with few published data.

Keywords:

line profile parameters, line shift, sulfur dioxide, carbon dioxide

References:

1. Forget F., Leconte J. Possible climates on terrestrial exoplanets // Philos. Trans. Roy. Soc. A: Math., Phys. Eng. Sci. 2014. V. 372, N 20130084. P. 1–25. DOI: 10.1098/rsta.2013.0084.
2. Zurek R.W., Chicarro A., Allen M.A., Bertaux J.L., Clancy R.T., Daerden F., Formisano V., Garvin J.B., Neukum G., Smith M.D. Assessment of a 2016 mission concept: The search for trace gases in the atmosphere of Mars // Planet Space Sci. 2011. V. 59. P. 284–291. DOI: 10.1016/j.pss.2010.07.007.
3. Krasnopolsky V.A. Spatially-resolved high-resolution spectroscopy of Venus 2. Variations of HDO, OCS, and SO2 at the cloud tops // Icarus. 2010. V. 209. P. 314–322. DOI: 10.1016/j.icarus.2010.05.008.
4. Korablev O., Montmessin F., Trokhimovskiy A., Fedorova A.A., Shakun A.V., Grigoriev A.V., Moshkin B.E., Ignatiev N.I., Forget F., Lefèvre F., Anufreychik K., Dzuban I., Ivanov Y.S., Kalinnikov Y.K., Kozlova T.O., Kungurov A., Makarov V., Martynovich F., Maslov I., Merzlyakov D., Moiseev P.P., Nikolskiy Y., Patrakeev A., Patsaev D., Santos-Skripko A., Sazonov O., Semena N., Semenov A., Shashkin V., Sidorov A., Stepanov A.V., Stupin I., Timonin D., Titov A.Y., Viktorov A., Zharkov A., Altieri F., Arnold G., Belyaev D.A., Bertaux J.L., Betsis D.S., Duxbury N., Encrenaz T., Fouchet, Gérard, Grassi, Guerlet, Hartogh P., Kasaba Y., Khatuntsev I., Krasnopolsky V.A., Kuzmin R.O., Lellouch E., Lopez-Valverde M.A., Luginin M., Määttänen A., Marcq E., Martin Torres J., Medvedev A.S., Millour E., Olsen K.S., Patel M.R., Quantin-Nataf C., Rodin, Shematovich, Thomas I., Thomas N., Vazquez L., Vincendon M., Wilquet V., Wilson C.F., Zasova L.V., Zelenyi L.M., Zorzano M.P. The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter // Space Sci. Rev. 2018. V. 214, N 7. P. 1–62. DOI: 10.1007/s11214-017-0437-6.
5. Shaji N. ISRO Venus Orbiter Mission (2019). URL: https: // www.lpi.usra.edu/vexag/meetings/archive/ vexag17/presentations/Nigar.pdf (last access: 10.09.2024).
6. Zasova L.V., Gorinov D.A., Eismont N.A., Kovalenko I.D., Abbakumov A.S., Bober S.A. Venera-D: A design of an automatic space station for Venus exploration // Solar Syst. Res. 2019. V. 53, N 7. P. 506–510. DOI: 10.1134/S0038094619070244.
7. Forget F., Leconte J. Possible climates on terrestrial ExoPlanets // Philos. Trans. Roy. Soc. A: Math., Phys. Eng. Sci. 2014. V. 372, N 20130084. DOI: 10.1098/rsta.2013.0084.
8. JWST Transiting Exoplanet Community Early Release Science Team. Identification of carbon dioxide in an ExoPlanet atmosphere // Nature. 2023. V. 614. P. 649–652. DOI: 10.1038/s41586-022-05269-w.
9. Vasilenko I.A., Naumenko O.V., Horneman V.-M. Ekspertnyi spisok linii pogloshcheniya molekuly 32S16O2 v diapazone 0–4200 cm-1 // Optika atmosf. i okeana. 2023. V. 36, N 1. P. 5–11. DOI: 10.15372/AOO20230101; Vasilenko I.A., Naumenko O.V., Horneman V.-M. Expert list of absorption lines of the 32S16O2 molecule in the 0–4200 cm-1 spectral region // Atmos. Ocean. Opt. 2023. V. 36, N 3. P. 199–206.
10. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbache T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 203, P. 3. DOI: 10.1016/j.jqsrt.2017.06.038.
11. Wilzewski J.S., Gordon I., Kochanov R.V., Hill C., Rothman L.S. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS, and C2H2 // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 168. P. 193–206. DOI: 10.1016/j.jqsrt.2015.09.003.
12. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canèw E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Auwera J.V., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer 2022. V. 277, N 1. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
13. Borkov Yu.G., Lyulin O.M., Petrova T.M., Solodov A.M., Solodov A.A, Deichuli V.M., Perevalov V.I. CO2-broadening and shift coefficients of sulfur dioxide near 4 mm // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 225. P. 119–124. DOI: 10.1016/j.jqsrt.2018.12.030.
14. Carlotti M. Global-fit approach to the analysis of limb-scanning atmospheric measurements // Appl. Opt. 1988. V. 27. P. 3250–3254. DOI: 10.1364/AO.27.003250.
15. Benner D.C., Rinsland C.P., Malathy D.V., Devi V.M., Smith M.A.H., Atkins D. A multispectrum nonlinear least squares fitting technique // J. Quant. Spectrosc. Radiat. Transfer. 1995. V. 53. P. 705–721. DOI: 10.1016/0022-4073(95)00015-D.
16. Nevzorova T.A., Dudaryonok A.S., Lavrentiev N.A., Lavrentieva N.N. Raschet koeffitsientov ushireniya linii oksida sery v perpendikulyarnoi polose ν1 + ν3 davleniem uglekislogo gaza pri komnatnoi temperature // Optika atmosf. i okeana. 2023. V. 36, N 2. P. 81–85. DOI: 10.15372/AOO20230201; Nevzorova T.A., Dudaryonok A.S., Lavrentiev N.A., Lavrentieva N.N. Calculation of broadening coefficients of sulfur dioxide lines by carbon dioxide in the ν1 + ν3 A-type band at room temperature // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 287–292.
17. Nevzorova T.A., Dudaryonok A.S., Lavrentiev N.A., Bykov A.D., Lavrentieva N.N. Coefficients of carbon dioxide pressure-induced line shift of sulfur dioxide at room temperature: The ν1 + ν3 band // Russ. J. Phys. Chem. 2024. P. 1–5. DOI: 10.1134/S0036024424700018.
18. Bykov A.D., Lavrentieva N.N., Sinitsa L.N. Semi-empiric approach of the calculation of H2O and CO2 line broadening and shifting // Mol. Phys. 2004. V. 102, N 14–15. P. 1653–1658. DOI: 10.1080/00268970410001725765.
19. Anderson P.W. Pressure broadening in the microwave and infrared regions // Phys. Rev. 1949. V. 76. P. 647–661. DOI: 10.1103/PhysRev.76.647.
20. Tsao C.J., Curnutte B. Line-width of pressure-broadened spectral lines // J. Quant. Spectrosc. Radiat. Transfer. 1961. V. 2. P. 41–91. DOI: 10.1016/0022-4073(62)90013-4.
21. Dudaryonok A.S., Lavrentieva N.N., Ma Q. Metod srednikh chastot dlya rascheta polushirin linii molekul tipa asimmetrichnogo volchka // Optika atmosf. i okeana. 2015. V. 28, N 8. PС. 675–681. DOI: 10.15372/AOO20150801; Dudaryonok A.S., Lavrentieva N.N., Ma Q. The average energy difference method for calculation of line broadening of asymmetric tops // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 503–509.
22. Radtsig A.A., Smirnov B.M. Spravochnik po atomnoi i molekulyarnoi fizike M.: Atomizdat, 1980. 280 p.
23. Graham C., Pierrus J., Raab R.E. Measurement of the electric quadrupole moments of CO2, CO, and N2 // Mol. Phys. 1989. V. 67, N 4. P. 939–955. DOI: 10.1080/00268978900101551.
24. Lavrentieva N., Osipova A., Sinitsa L., Claveau Ch., Valentin A. Shifting temperature dependence of nitrogen-broadened lines in the ν2 band of H2O // Mol. Phys. 2008. V. 106. P. 1261–1266. DOI: 10.1080/00268970802159948.
25. Barb A., Buazza S., Platu Zh.Zh., Bykov A.D., Lavrentieva N.N., Sinitsa L.N. Sdvig davleniem N2 i О2 linii pogloshcheniya kolebatel'nykh polos ν1 + ν3, 2ν1 i 2ν3 ozona // Optika atmosf. i okeana. 1993. V. 6, N 4. P. 349–359.