Vol. 37, issue 10, article # 4

Bordovskaya Yu. I., Timofeev Yu. M., Virolainen Ya. A., Poberovsky A. V. Analysis of the synergetic ground-based MW + IR method for determining vertical profiles of ozone content. // Optika Atmosfery i Okeana. 2024. V. 37. No. 10. P. 835–840. DOI: 10.15372/AOO20241004 [in Russian].
Copy the reference to clipboard

Abstract:

Ozone is one of the important trace gases of the Earth's atmosphere. This study anal yses ground-based synergetic MW + IR method for remote measurements of ozone using ground-based instruments at Peterhof (SPbSU) – MW ozonometer and Bruker IFS-125HR Fourier transform infrared spectrometer. Numerical estimates of the errors and vertical resolution of remote measurements showed that uncertainties of remote ozone measurements at different altitudes vary from 5 to 20% or more. The vertical resolution of the MW + IR method varies from ~ 10 to ~ 12 km. These estimates demonstrate the potential for determining ozone in Peterhof using ground-based combined MW and IR measurements.

Keywords:

remote measurements, ground-based synergetic method, ozone profile, errors, a priori information, vertical resolution

References:

1. World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion. GAW Report N 278. WMO: Geneva, 2022. 509 p. URL: https://library.wmo.int/idurl/4/58360 (last access: 22.08.2024).
2. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. USA: John Wiley & Sons, 2006. 1225 p.
3. World Health Organization. WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Geneva. 2021. URL: https://www.who.int/publications/i/item/9789240034228 (last access: 24.08.2024).
4. Word Ozone and Ultraviolet Radiation Data Centre. Canada, 2024. URL: https://woudc.org/ (last access: 17.07.2024).
5. Harmonization and Evaluation of Grand-Based Instruments for Free Tropospheric Ozone Measurements. URL: https://hegiftom.meteo.be/ (last access: 17.07.2024).
6. GES DISC. URL: https://disc.gsfc.nasa.gov/ (last access: 17.07.2024).
7. The CCI (ESA Climate Change Initiative). URL: https://climate.esa.int/en/projects/ozone/ (last access: 17.07.2024).
8. De Mazière M., Thompson A.M., Kurylo M.J., Wild J.D., Bernhard G., Blumenstock T., Braathen G.O., Hannigan J.W., Lambert J.-C., Leblanc T., McGee T.J., Nedoluha G., Petropavlovskikh I., Seckmeyer G., Simon P.C., Steinbrecht W., Strahan S.E. The Network for the Detection of Atmospheric Composition Change (NDACC): History, status, and perspectives // Atmos. Chem. Phys. 2018. V. 18. P. 4935–4964. DOI: 10.5194/acp-18-4935-2018.
9. Virolainen Ya.A., Timofeev Yu.M. Kompleksnyi metod opredeleniya vertikal'nykh profilei soderzhaniya ozona dlya validatsii sputnikovykh izmerenii // Izv. RAN. Fiz. atmosf. i okeana. 2010. N 4. P. 61–665.
10. Timofeyev Yu., Kostsov V., Virolainen Ya. Synergetic ground-based methods for remote measurements of ozone vertical profiles // AIP Conf. Proc. 2013. V. 1531, N 1. P. 380–383. DOI: 10.1063/1.4804786
11. Parrish A., Zafra R.L., Solomon P.M., Barrett J.W. A ground-based technique for millimeter wave spectroscopic observations of stratospheric trace constituents // Radio Sci. 1988. V. 23, N 2. P. 106–118.
12. Parrish A., Connor B.J., Tsou J.J., McDermid I.S., Chu W.P. Ground-based microwave monitoring of stratospheric ozone // J. Geophys. Res. D. 1992. V. 97, N 2. P. 2541–2546.
13. Connor B.J., Parrish A., Tsou J.J., McCormick M.P. Error analysis for the ground-based microwave ozone measurements during STOIC // J. Geophys. Res. D. 1995. V. 100, N 5. P. 9283–9291.
14. Kulikov Yu.Yu., Krasil'nikov A.A., Ryskin V.G. Rezul'taty mikrovolnovykh issledovanii struktury ozonovogo sloya polyarnykh shirot vo vremya zimnikh anomal'nykh poteplenii stratosfery // Izv. RAN. Fiz. atmosf. i okeana. 2002. V. 38, N 2. P. 182.
15. Kostsov V.S., Poberovskii A.V., Osipov S.I., Timofeev Yu.M. Kompleksnaya metodika interpretatsii nazemnykh mikrovolnovykh spektral'nykh izmerenii v zadache opredeleniya vertikal'nogo profilya soderzhaniya ozona // Optika atmosf. i okeana. 2012. V. 25, N 4. P. 354–360; Kostsov V.S., Poberovskii A.V., Osipov S.I., Timofeev Yu.M. Multiparameter technique for interpreting ground-based microwave spectral measurements in the problem of ozone vertical profile retrieval // Atmos. Ocean. Opt. 2012. V. 25, N 4. P. 269–275.
16. Munoz-Martin J.F., Bosch-Lluis X., Pradhan O., Brown S.T., Kangaslahti P.P., Tanner A.B., Ogut M., Misra S., Lim B.H. The Microwave Temperature and Humidity Profiler: Description and preliminary results // Sensors. 2023. V. 23. P. 8554. DOI: 10.3390/s23208554.
17. Virolainen Ya.A., Timofeev Yu.M., Poberovskii A.V., Eremenko M., Dyufor G. Opredelenie soderzhaniya ozona v razlichnykh sloyakh atmosfery s pomoshch'yu nazemnoi Fur'e-spektrometrii // Izv. RAN. Fiz. atmosf. i okeana. 2015. V. 51, N 2. P. 191–200.
18. Rodgers C.D. Inverse Methods for Atmospheric Sounding. Theory and Practice. Singapore, New Jersey, London, Hong Kong: World Scientific, 2000. 238 p.
19. Rosenkranz P.W. Line-by-line microwave radiative transfer (non-scattering) // MWRnet – an international network of ground-based Microwave Radiometers. 2017. URL: https://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html (last access: 24.08.2024).
20. Clough S.A., Shephard M.W., Mlawer E.J., Delamere J.S., Iacono M.J., Cdy-Pereira K., Boukabara S., Brown P.D. Atmospheric radiative transfer modeling: A summary of the AER codes // J. Quant. Spectrosc. Radiat. Transfer. 2005. V. 91, N 2. P. 233–244. DOI: 10.1016/j.jqsrt.2004.05.058.