Vol. 37, issue 10, article # 3

Banakh V. A., Smalikho I. N., Gordeev E. V., Sukharev A. A., Falits A. V. Remote determination of turbulence parameters of a stratified atmospheric boundary layer. // Optika Atmosfery i Okeana. 2024. V. 37. No. 10. P. 830–834. DOI: 10.15372/AOO20241003 [in Russian].
Copy the reference to clipboard

Abstract:

The results of experiments on determining the turbulence parameters of a stratified atmospheric boundary layer using remote sensing are presented. The height-time distributions and vertical profiles of the dissipation rate of kinetic energy of turbulence and the structural constant of turbulent fluctuations of temperature obtained from measurements of radial velocity with a coherent wind lidar and temperature with a microwave radiometer are compared with altitude variations in the parameters characterizing atmospheric stability. It is shown that the dissipation rate, which determines the intensity of wind turbulence, decreases in the boundary layer with altitude for all types of thermal stratification. The intensity of turbulent fluctuations of temperature depends to a greater extent on altitude variations in thermodynamic conditions in the atmosphere. If the thermal instability of the atmosphere at higher altitudes exceeds that in lower layers, then the structural constant of temperature fluctuations can not decrease but increase with altitude. In accordance with the altitude variation in the structural constant of temperature, the values of the structural constant of turbulent pulsations of the refractive index can also increase with altitude and differ from those predicted on the basis of known models.

Keywords:

structural constant of temperature fluctuations, dissipation rate of turbulence kinetic energy, turbulent Prandtl number, gradient Richardson number, fluctuations of the refractive index

Figures:

References:

1. Banta R.M., Pichugina Y.L., Brewer W.A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet // J. Atmos. Sci. 2006. V. 63. P. 2700–2719. DOI: 10.1175/JAS3776.1.
2. O’Connor E.J., Illingworth A.J., Brooks I.M., Westbrook C.D., Hogan R.J., Davies F., Brooks B.J. A method for estimating the kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements // J. Atmos. Ocean. Technol. 2010. V. 27, N 10. P. 1652–1664. DOI: 10.1175/2010JTECHA1455.1.
3. Sathe A., Mann J. A review of turbulence measurements using ground-based wind lidars // Atmos. Meas. Tech. 2013. V. 6, N 11. P. 3147–3167. DOI: 10.5194/amt-6-3147-2013.
4. Sathe A., Mann J., Vasiljevic N., Lea G. A six-beam method to measure turbulence statistics using ground-based wind lidars // Atmos. Meas. Tech. 2015. V. 8. P. 729–740. DOI: 10.5194/amt-8-729-2015.
5. Newman J.F., Klein P.M., Wharton S., Sathe A., Bonin T.A., Chilson P.B., Muschinski A. Evaluation of three lidar scanning strategies for turbulence measurements // Atmos. Meas. Tech. 2016. V. 9. P. 1993–2013. DOI: 10.5194/amt-9-1993-2016.
6. Bonin T.A., Choukulkar A., Brewer W.A., Sandberg S.P., Weickmann A.M., Pichugina Y., Banta R.M., Oncley S.P., Wolfe D.E. Evaluation of turbulence measurement techniques from a single Doppler lidar // Atmos. Meas. Tech. 2017. V. 10. P. 3021–3039. DOI: 10.5194/amt-2017-35.
7. Bodini N., Lundquist J.K., Newsom R.K. Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign // Atmos. Meas. Tech. 2018. V. 11. P. 4291–4308. DOI: 10.5194/amt-11-4291-2018.
8. Banakh V.A., Smalikho I.N., Falits A.V., Sherstobitov A.M. Estimating the parameters of wind turbulence from spectra of radial velocity measured by a pulsed Doppler lidar // Remote Sens. 2021. V. 13, N 11. AN 2071. DOI: 10.3390/rs13112071.
9. Banakh V.A., Smalikho I.N. The impact of internal gravity waves on the spectra of turbulent fluctuations of vertical wind velocity in the stable atmospheric boundary layer // Remote Sens. 2023. V. 15. AN 2894. DOI: 10.3390/rs15112894.
10. Banakh V.A., Falits A.V., Sherstobitov A.M., Smalikho I.N., Sukharev A.A., Gordeev E.V., Zaloznaya I.V. Ob otsenivanii vysoty sloya turbulentnogo peremeshivaniya iz vysotno-vremennykh raspredelenii chisla Richardsona // Optika atmosf. i okeana. 2022. V. 35, N 11. P. 912–917. DOI: 10.15372/AOO20221106; Banakh V.A., Falits A.V., Sherstobitov A.M., Smalikho I.N., Sukharev A.A., Gordeev E.V., Zaloznaya I.V. On estimation of the turbulent mixing layer altitude from the altitude-time distributions of the Richardson number // Atmos. Ocean. Opt. 2023. V. 36, N 1. P. 30–40. DOI: 10.1134/S1024856023020033.
11. Tatarskii V.I. Rasprostranenie voln v turbulentnoi atmosfere. M.: Nauka, 1967. 548 p.
12. Banakh V.A., Smalikho I.N., Zaloznaya I.V. Eksperimental'naya proverka model'noi zavisimosti turbulentnogo chisla Prandtlya ot gradientnogo chisla Richardsona // Stat'ya podgotovlennaya. OAO (in print).
13. Jiang P., Yuan J., Wu K., Wang L., Xia H. Turbulence detection in the atmospheric boundary layer using coherent Doppler wind lidar and microwave radiometer // Remote Sens. 2022. V. 14, N 12. AN 2951. DOI: 10.3390/rs14122951.
14. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p.
15. Gurvich A.S., Kon A.I., Mironov V.L., Khmelevtsov S.S. Lazernoe izluchenie v turbulentnoi atmosfere. M.: Nauka, 1976. 277 p.