Vol. 37, issue 09, article # 9
Copy the reference to clipboard
Abstract:
The absence of an adequate optical model for cirrus clouds currently poses a significant challenge in interpreting ground-based and space-borne lidar data. This, in turn, leads to a lack of up-to-date information for climate modeling and daily weather forecasting. Existing optical models typically assume that ice crystals in cirrus clouds have an ideal shape, which is often not the case. This article proposes an optical model for clouds which consists of the most common irregularly shaped particles, specifically hollow hexagonal columns. The model takes into account the actual distributions of particles in the cloud over both depth of the cavity and particle size. Additionally, the model considers the scenario of a cloud containing a mixture of ideal hexagonal columns and hollow hexagonal columns, which significantly enhances the model reliability. The resulting model holds great practical importance for laser sounding of the atmosphere.
Keywords:
light scattering, physical optics method, atmospheric ice crystal, cirrus cloud, optical model, hollow column
Figures:
References:
1. Liou K.N. Influence of cirrus clouds on weather and climate processes – a global perspective // Mon. Weather Rev. 1986. V. 114. P. 1167–1199. DOI: 10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.
2. Zubko E., Shmirko K., Pavlov A., Sun W.B., Schuster G.L., Hu Y.X., Stamnes S., Omar A., Baize R.R., McCormick M.P., Loughman R., Arnold J.A., Videen G. Active remote sensing of atmospheric dust using relationships between their depolarization ratios and reflectivity // Opt. Lett. 2021. V. 46. P. 2352–2355. DOI: 10.1364/OL.426584.
3. Sassen K., Zhu J., Benson S. Midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. IV. Optical displays // Appl. Opt. 2003. V. 42. P. 332–341. DOI: 10.1364/AO.42.000332.
4. Noel V., Sassen K. Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations // J. Appl. Meteorol. 2005. V. 44. P. 653–664. DOI: 10.1175/JAM2223.1.
5. Reichardt J., Wandinger U., Klein V., Mattis I., Hilber B., Begbie R. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements // Appl. Opt. 2012. V. 51. P. 8111–8131. DOI: 10.1364/AO.51.008111.
6. Tkachev I.V., Timofeev D.N., Kustova N.V., Konoshonkin A.V. Bank dannyh matrits obratnogo rasseyaniya sveta na atmosfernyh ledyanyh kristallah razmerami 10–100 mkm dlya interpretatsii dannyh lazernogo zondirovaniya // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 199–206. DOI: 10.15372/AOO20210306.
7. Konoshonkin A.V., Kustova N.V., Shishko V.A., Timofeev D.N., Tkachev I.V., Bakute E., Babinovich A.E., Zhu X., Wang Zhenzhu. Harakteristiki obratnogo rasseyaniya sveta na polyh ledyanyh geksagonal'nyh stolbikah dlya postroeniya opticheskoi modeli peristyh oblakov // Optika atmosf. i okeana. 2023. V. 36, N 12. P. 1013–1019. DOI: 10.15372/AOO20231208.
8. Bi L., Yang P., Kattawar G.W., Hu Y., Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1492–1508. DOI: 10.1016/j.jqsrt.2011.02.015.
9. Yang P., Liou K.N. Geometric-optics – integral-equation method for light scattering by nonspherical ice crystals // Appl. Opt. 1996. V. 35. P. 6568–6584. DOI: 10.1364/AO.35.006568.
10. Borovoi A., Konoshonkin A., Kustova N. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189. DOI: 10.1016/j.jqsrt.2014.04.030.
11. Borovoi A., Konoshonkin A., Kustova N., Okamoto H. Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals // Opt. Express. 2012. V. 20, N 27. P. 28222–28233. DOI: 10.1364/OE.20.028222.
12. Borovoi A., Konoshonkin A., Kustova N. Backscattering by hexagonal ice crystals of cirrus clouds // Opt. Lett. 2013. V. 38. P. 2881–2884. DOI: 10.1364/OL.38.002881.
13. Borovoi A., Konoshonkin A., Kustova N. Backscattering by hexagonal ice crystals of cirrus clouds // Opt. Lett. 2013. V. 38, N 15. P. 2881–1884. DOI: 10.1364/OL.38.002881.
14. Okamoto H., Sato K., Borovoi A., Ishimoto H., Masuda K., Konoshonkin A., Kustova N. Interpretation of lidar ratio and depolarization ratio of ice clouds using spaceborne high-spectral-resolution polarization lidar // Opt. Express. 2019. V. 27. P. 36587–36600. DOI: 10.1364/OE.27.036587.
15. Okamoto H., Sato K., Borovoi A., Ishimoto H., Masuda K., Konoshonkin A., Kustova N. Wavelength dependence of ice cloud backscatter properties for space-borne polarization lidar applications // Opt. Express. 2020. V. 28. P. 29178–29191. DOI: 10.1364/OE.400510.
16. Masuda K., Ishimoto H., Mano Y. Efficient method of computing a geometric optics integral for light scattering by nonspherical particles // Pap. Meteorol. Geophys. 2012. V. 63. P. 15–19. DOI: 10.2467/mripapers.63.15.
17. Lawson R.P., Woods S., Jensen E., Erfani E., Gurganus C., Gallagher M., Connolly P., Whiteway J., Baran A.J., May P., Heymsfield A., Schmitt C.G., McFarquhar G., Um J., Protat A., Bailey M., Lance S., Muehlbauer A., Stith J., Korolev A., Toon O.B., Kramer M. A review of ice particle shapes in cirrus formed in situ and in anvils // J. Geophys. Res.: Atmos. 2019. V. 124. P. 10049–10090. DOI: 10.1029/2018JD030122.
18. Borovoi A., Kustova N., Konoshonkin A. Interference phenomena at backscattering by ice crystals of cirrus clouds // Opt. Exp. 2015. V. 23. P. 24557–24571. DOI: 10.1364/OE.23.024557.
19. Wang Z., Shishko V., Kustova N., Konoshonkin A., Timofeev D., Xie C., Liu D., Borovoi A. Radar-lidar ratio for ice crystals of cirrus clouds // Opt. Express. V. 29. P. 4464–4474. DOI: 10.1364/OE.410942.
20. Shishko V., Konoshonkin A., Kustova N., Timofeev D., Borovoi A. Coherent and incoherent backscattering by a single large particle of irregular shape // Opt. Express. 2019. V. 27. P. 32984–32993. DOI: 10.1364/OE.27.032984.
21. Lin W., Bi L., Weng F., Li Z., Dubovik O. Capability of superspheroids for modeling PARASOL observations under dusty-sky conditions // J. Geophys. Res.: Atmos. 2021. V. 126, N 1. P. 10049–10090. DOI: 10.1029/2020JD033310.
22. Sun L.H., Bi L., Yi B.Q. The Use of Superspheroids as surrogates for modeling electromagnetic wave scattering by ice crystals // Remote Sens. 2021. V. 13, N 9. P. 1733. DOI: 10.3390/rs13091733.
23. Schmitt C.G., Heymsfield A.J. On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus // J. Atmos. Sci. 2007. V. 64. P. 4514–4519. DOI: 10.1175/2007JAS2317.1.
24. Borovoi A.G. Light scattering by large particles: Physical optics and the shadow-forming field // Light Scattering Reviews. V. 8 / A.A. Kokhanovsky (ed.). Berlin: Springer-Praxis, 2013. P. 115–138.
25. Konoshonkin A., Borovoi A., Kustova N., Reichardt J. Power laws for backscattering by ice crystals of cirrus clouds // Opt. Express. 2017. V. 25. P. 22341–22346. DOI: 10.1364/OE.25.022341.
26. Bailey M., Hallett J. Growth rates and habits of ice crystals between -20 degrees and -70 degrees C // J. Atmos. Sci. 2004. V. 61. P. 514–544. DOI: 10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2.
27. Gil-Díaz C., Sicard M., Comerón A., dos Santos Oliveira D.C.F., Muñoz-Porcar C., Rodríguez-Gómez A., Lewis J.R., Welton E.J., Lolli S. Geometrical and optical properties of cirrus clouds in Barcelona, Spain: Analysis with the two-way transmittance method of 5 years of lidar measurements // Atmos. Meas. Tech. Discuss. 2023. V. 2023. P. 1–31. DOI: 10.5194/amt-17-1197-2024.
28. Heymsfield A.J., Krämer M., Luebke A., Brown P., Cziczo D.J., Franklin C., Lawson P., Lohmann U., McFarquhar G., Ulanowski Z., Van Tricht K. Cirrus Clouds // Meteorol. Monographs. 2017. V. 58. P. 2.1–2.26.
29. Auer A.H., Veal D.L. The dimension of ice crystals in natural clouds // J. Atmos. Sci. 1970. V. 29. P. 311–317. DOI: 10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2.
30. Heymsfield A.J. Ice crystal terminal velocities // J. Atmos. Sci. 1972. V. 29. P. 1348–1357. DOI: 10.1175/1520-0469(1972)029<1348:ICTV>2.0.CO;2.
31. Heymsfield A.J., Schmitt C., Bansemer A. Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0 to -86°C // J. Atmos. Sci. 2013. V. 70, N 12. P. 4123–4154. DOI: 10.1175/JAS-D-12-0124.1.
32. Saito M., Yang P. Generalization of atmospheric nonspherical particle size: Interconversions of size distributions and optical equivalence // J. Atmos. Sci. 2022. V. 79. P. 3333–3349. DOI: 10.1175/JAS-D-22-0086.1.