Vol. 37, issue 09, article # 6
Copy the reference to clipboard
Abstract:
Modern changes in the global climate are accompanied by rising air and soil temperatures. How do they affect soil respiration and should we expect a change in greenhouse gas emissions? These questions cannot be answered without studying gas exchange between the soil and the atmosphere. In this paper, the analysis of the greenhouse gas fluxes at the soil–atmosphere interface observed at the Fonovaya Observatory in 2023 is presented. A stable CO2 and CH4 uptake throughout the growing season is shown. As for N2O, on the contrary, a weak positive flux was observed. A steady uptake of carbon dioxide from the atmosphere occurred from May to mid-August; its value attained -600 mg × m-2 × h-1 in June and July. The methane flux (sink) attained -0.08 mg × m-2 × h-1. The nitrous oxide flux fluctuated near zero with the daily average being within ± 0.02 mg × m-2 × h-1. For CO2, a nonlinear positive relationship between the increase in respiration of vegetation and soil temperature is revealed. Linear temperature dependences are found for methane fluxes in all three chambers, that is, an increase in soil temperature enhances CH4 uptake. N2O fluxes show very weak positive dependence on the soil temperature in both transparent chambers (with vegetation and without it). The estimates of the contribution of CO2 fluxes from the soil showed that during nighttime, microbial respiration can contribute from 46.7 to 77.9% to the total respiration of the grassland ecosystem. On average, the share of soil methane uptake per day due to diffusion and oxidation by methanotrophs not associated with plants varies from 5.3 to 48.3%. The contribution becomes smaller during the daytime and increases at night. The contribution of soil with removed vegetation to the total N2O emission can attain 92.3%. The results expand knowledge about soil–atmosphere gas exchange under changing climate conditions.
Keywords:
atmosphere, air, methane, nitrous oxide, flux, carbon dioxide, emission
Figures:
References:
1. Tollefson J. Earth’s hottest month: These charts show what happened in July and what comes next // Nature. 2023. V. 620, N 7975. P. 703–704. DOI: 10.1038/d41586-023-02552-2.
2. IPCC: Summary for Policymakers // Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021. P. 1–41.
3. Ramonet M., Ciais Ph., Sha M.K., Steinbacher M., Sweeney C. CO2 in the atmosphere: Growth and trends since 1850 // Oxford Research Encyclopedias, Climate Change. 2023. 44 p. DOI: 10.1093/acrefore/9780190228620.013.863.
4. Kiselev A.A., Karol' I.L. S metanom po zhizni. SPb.: Glavnaya geofizicheskaya observatoriya im. A.I. Voeikova, 2019. 73 p.
5. Thompson R.L., Lassaletta L., Patra P.K., Wilson C., Wells K.C., Gressent A., Koffi E.N., Chipperfield M.P., Winiwarter W., Davidson E.A., Tian H., Canadell J.G. Acceleration of global N2O emissions seen from two decades of atmospheric inversion // Nature Clim. Change. 2019. V. 9, N 12. P. 993–998. DOI: 10.1038/s41558-019-0613-7.
6. Alferov A.M., Blinov V.G., Gitarskii M.L., Grabar V.A., Zamolodchikov D.G., Zinchenko A.V., Ivanova N.P., Ivakhov V.M., Karabanyu R.T., Karelin D.V., Kalyuzhnyi I.L., Kashin F.V., Konyushkov D.E., Korotkov V.N., Krovotyntsev V.A., Lavrov S.A., Marunich A.S., Paramonova N.N., Romanovskaya A.A., Trunov A.A., Shilkin A.V., Yuzbekov A.K. Monitoring potokov parnikovykh gazov v prirodnykh ekosistemakh. Saratov: Amirit, 2017. 279 p.
7. Kuricheva O.A., Avilov V.K., Varlagin A.V., Gitarskii M.L., Dmitrichenko A.A., Dyukarev E.A., Zagirova S.V., Zamolodchikov D.G., Zyryanov V.I., Karelin D.V., Karsanaev S.V., Kurganova I.N., Lapshina E.D., Maksimov A.P., Maksimov T.Kh., Mamkin V.V., Marunich A.S., Miglovets M.N., Mikhailov O.A., Panov A.V., Prokushkin A.S., Sidenko N.V., Shilkin A.V., Kurbatova Yu.A. Monitoring ekosistemnykh potokov parnikovykh gazov na territorii Rossii: set' RuFlux // Izv. RAN. Ser. geograficheskaya. 2023. V. 87, N 4. P. 512–535. DOI: 10.31857/S2587556623040052.
8. Glagolev M.V. K metodu «obratnoi zadachi» dlya opredeleniya poverkhnostnoi plotnosti potoka gaza iz pochvy // Dinamika okruzhayushchei sredy i global'nye izmeneniya klimata. 2010. V. 1, N 1. P. 17–36.
9. Riederer M., Serafimovich A., Foken T. Net ecosystem CO2 exchange measurements by the closed chamber method and the eddy covariance technique and their dependence on atmospheric conditions // Atmos. Meas. Tech. 2014. V. 7, N 4. P. 1057–1064. DOI: 10.1038/s41558-019-0613-7.
10. Wang X., Wang C., Bond-Lamberty B. Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis // Agric. Forest Meteorol. 2017. V. 247. P. 93–103. DOI: 10.1016/j.agrformet.2017.07.023.
11. Pavelka P., Acosta M., Kiese R., Altimir N., Brümmer C., Crill P., Darenova E., Fuß R., Gielen B., Graf A., Klemedtsson L., Lohila A., Longdoz B., Lindroth A., Nilsson M., Jiménez S.M., Merbold L., Montagnani L., Peichl M., Pihlatie M., Pumpanen J., Ortiz P.S., Silvennoinen H., Skiba U., Vestin P., Weslien P., Janous D., Kutsch W. Standardisation of chamber technique for CO2, N2O, and CH4 fluxes measurements from terrestrial ecosystems // Int. Agrophys. 2018. V. 32, N 12. P. 569–587. DOI: 10.1515/intag-2017-0045.
12. Glagolev M.V., Sabrekov A.F., Kazantsev V.S. Metody izmereniya gazoobmena na granitse pochva/atmosfera. Tomsk: TGPU, 2010. 96 p.
13. Kurganova I.N., Goncharova O.Yг., Il'yasov D.V., Karelin D.V., Lopes de Gerenyu V.O., Matyshak G.V., Miglovets M.N., Moshkina E.V., Osipov A.F., Khoroshaev D.A., Sрarkov I.N. Metodicheskoe rukovodstvo po opredeleniyu emissii SO2 iz pochv v razlichnykh tipakh ekosistem. Pushchino: [B.I.], 2022. 63 з.
14. Fiedler J., Fuß R., Glatzel S., Hagemann U., Huth V., Jordan S., Jurasinski G., Kutzbach L., Maier M., Schäfer K., Weber T., Weymann D. Best Practice Buiedeline. Measurement of carbon dioxide, methane and nitrous oxide fluxes between soil-vegetation-systems and the atmosphere using non-steady state chambers / Deutsche Bodenkundliche Gesellschaft. 2022. 70 p.
15. Zadorozhnii A.N., Semenov M.V., Khodzhaeva A.K., Semenov V.M. Pochvennye protsessy produktsii, potrebleniya i emissii parnikovykh gazov // Agrokhimiya. 2010. N 10. P. 75–92.
16. Antonovich V.V., Antokhin P.N., Arshinov M.Yu., Belan B.D., Balin Yu.S., Davydov D.K., Ivlev G.A., Kozlov A.V., Kozlov V.S., Kokhanenko G.P., Novoselov M.M., Panchenko M.V., Penner I.E., Pestunov D.A., Savkin D.E., Simonenkov D.V., Tolmachev G.N., Fofonov A.V., Chernov D.G., Smargunov V.P., Yausheva E.P., Paris J.-D., Ancellet G., Law K.S., Pelon J., Machida T., Sasakawa M. Station for the comprehensive monitoring of the atmosphere at Fonovaya Observatory, West Siberia: Current status and future needs // Proc. SPIE. 2018. V. 10833. P. 108337Z. DOI: 10.1117/12.2504388.
17. Belan B.D., Arshinov M.Yu., Davydov D.K., Kozlov A.V., Ivlev G.A. Avtomaticheskaya kamera dlya izmereniya potokov parnikovykh gazov na poverkhnosti razdela pochva–atmosfera. Patent na poleznuyu model' N 169373 ot 15 march 2017 year.
18. Rafalska A., Walkiewicz A., Osborne B., Klumpp K., Bieganowski A. Variation in methane uptake by grassland soils in the context of climate change – A review of effects and mechanisms // Sci. Total Environ. 2023. V. 871. P. 162127. DOI: 10.1016/j.scitotenv.2023.162127.
19. Schubert C.J., Wehrli B. Contribution of methane formation and methane oxidation to methane emission from freshwater systems / A. Stams, D. Sousa (eds.) // Handbook of Hydrocarbon and Lipid Microbiology. Springer, 2018. P. 1–31.
20. Krapivin V.F., Shalaev V.S., Burkov D.V. Modelirovanie global'nykh tsiklov ugleroda i metana // Lesnoi vestnik. 2015. N 1. P. 170–178.
21. Glagolev M.V., Smagin A.V. Kolichestvennaya otsenka emissii metana bolotami: ot pochvennogo profilya – do regiona (k 15-letiyu issledovanii v Tomskoi oblasti) // Doklady po ekologicheskomu pochvovedeniyu. 2006. N 3, iss. 3. P. 75–114.
22. Glagolev M.V., Filippov I.V. Inventarizatsii pogloshcheniya metana pochvami // Dinamika okruzhayushchei sredy i global'nye izmeneniya klimata. 2011. V. 2, N 2. P. 1–20.
23. Ge M., Korrensalo A., Laiho R., Kohl L., Lohila A., Pihlatie M., Li X., Laine A.M., Anttila J., Putkinen A., Wang W., Koskinen M. Plant-mediated CH4 exchange in wetlands: A review of mechanisms and measurement methods with implications for modeling // Sci. Total Environm. 2024. V. 914. DOI: 10.1016/j.scitotenv.2023.169662.
24. Potter C.S., Davidson E.A., Verchot L.V. Estimation of global biogeochemical controls and seasonality in soil methane consumption // Chemosphere. 1996. V. 32, N 11. P. 2219–2246. DOI: 10.1016/S1352-2310(97)80971-5.
25. Kammann C., Grünhage L., Jäger H.-J., Wachinger G. Methane fluxes from differentially managed grassland study plots: The important role of CH4 oxidation in grassland with a high potential for CH4 production // Environ. Pollut. 2001. V. 115, N 2. P. 261–273. DOI: 10.1016/s0269-7491(01)00103-8.
26. Wang F., Bettany J. Methane emission from Canadian prairie and forest soils under short term flooding conditions // Nutr. Cycl. Agroecosystem. 1997. V. 49, N 1. P. 197–202. DOI: 10.1023/A:1009758308457.
27. Guenet B., Gabrielle B., Chenu C., Arrouays D., Balesdent J., Bernoux M., Bruni E., Caliman J.-P., Cardinael R., Chen S., Ciais P., Desbois D., Fouche J., Frank S., Henault C., Lugato E., Naipal V., Nesme T., Obersteiner M., Zhou F. Can N2O emissions offset the benefits from soil organic carbon storage? // Glob. Change Biol. 2020. V. 27, N 2. P. 237–256. DOI: 10.1111/gcb.15342.
28. Shurpali N.J., Rannik U., Jokinen S., Lind S., Biasi C., Mammarella I., Peltola O., Pihlatie M., Hyvonen N., Raty M., Haapanala S., Zahniser M., Virkajarvi P., Vesala T., Martikainen P.J. Neglecting diurnal variations leads to uncertainties in terrestrial nitrous oxide emissions // Nat. Sci. Report. 2016. V. 6, N 1. Article 25739. DOI: 10.1038/srep25739.
29. Keane J.B., Morrison R., McNamara N.P., Ineson P. Real-time monitoring of greenhouse gas emissions with tall chambers reveals diurnal N2O variation and increased emissions of CO2 and N2O from miscanthus following compost addition // GCB Bioenergy. 2019. V. 11. P. 1456–1470. DOI: 10.1111/gcbb.12653.
30. Araujo P.I., Piñeiro-Guerra J.M., Yahdjian L., Acreche M.M., Alvarez C., Alvarez C.R., Costantini A., Chalco Vera J., De Tellería J., Della Chiesa T., Lewczuk N.A., Petrasek M., Piccinetti C., Picone L., Portela S.I., Posse G., Seijo M., Videla C., Piñeiro G. Drivers of N2O emissions from natural forests and grasslands differ in space and time // Ecosystems. 2021. V. 24, N 2. P. 335–350. DOI: 10.1007/s10021-020-00522-7.
31. Sabrekov A.F., Glagolev M.V., Fastovets I.A., Smolentsev B.A., Il'yasov D.V., Maksyutov Sh.Sh. Svyaz' potrebleniya metana s dykhaniem pochv i travyano-mokhovogo yarusa v lesnykh ekosistemakh yuzhnoi taigi Zapadnoi Sibiri // Pochvovedenie. 2015. N 8. P. 963–973.
32. Arshinov M.Yu., Belan B.D., Davydov D.C., Kozlov A.V., Fofonov A.V. Potoki parnikovykh gazov na granitse «pochva – atmosfera» v fonovom raione Tomskoi oblasti // Optika atmosf. i okeana. 2022. V. 35, N 12. P. 1021–1028. DOI: 10.15372/AOO20221209; Arshinov M.Yu., Belan B.D., Davydov D.C., Kozlov A.V., Fofonov A.V. Soil – atmosphere greenhouse gas fluxes in a background area in the Tomsk Region (Western Siberia) // Atmos. Ocean. Opt. 2023. V. 36, N 2. P. 152–161. DOI: 10.1134/S1024856023030028.
33. Krasnov O.A., Maksyutov Sh., Davydov D.K., Fofonov A.V., Glagolev M.V., Inoue G. Monitoring emissii metana i dvuokisi ugleroda iz pochvy v atmosferu i parametry pochvy. Bakcharskoe boloto Tomskoi oblasti (2014 year) // Optika atmosf. i okeana. 2015. V. 28, N 7. P. 630–637. DOI: 10.15372/AOO20150707.
34. Glagolev M.V., Il'yasov D.V., Terent'eva I.E., Sabrekov A.F., Krasnov O.A., Maksyutov Sh.Sh. Emissiya metana i dioksida ugleroda v zabolochennykh lesakh yuzhnoi i srednei taigi Zapadnoi Sibiri // Optika atmosf. i okeana. 2017. V. 30, N 4. P. 301–309. DOI: 10.15372/AOO20170407.
35. Serikova S., Pokrovsky O.S., Ala-Aho P., Kazantsev V., Kirpotin S.N., Kopysov S.G., Krickov I.V., Laudon H., Manasypov R.M., Shirokova L.S., Soulsby C., Tetzlaff D., Karlsson J. High riverine CO2 emissions at the permafrost boundary of Western Siberia // Nat. Geosci. 2018. V. 11, N 11. P. 825–829. DOI: 10.1038/s41561-018-0218-1.
36. Mustamo P., Maljanen M., Hyvärinen M., Ronkanen A.-K., Kløve B. Respiration and emissions of methane and nitrous oxide from a boreal peatland complex comprising different land-use types // Boreal Environ. Res. 2016. V. 21, N 5–6. P. 405–426.
37. Feigenwinter I., Hortnagl L., Zeeman M.J., Eugster W., Fuchs K., Merbold L., Buchmann N. Large inter-annual variation in carbon sink strength of a permanent grassland over 16 years: Impacts of management practices and climate // Agricult. Forest Meteorol. 2023. V. 340. P. 109613. DOI: 10.1016/j.agrformet.2023.109613.
38. Bobrik A.A., Ryzhova I.M., Goncharova O.Yu., Martyshak G.V., Makarov M.I., Volker D.A. Emissiya СО2 i zapasy organicheskogo ugleroda v pochvakh severotaezhnykh ekosistem Zapadnoi Sibiri v razlichnykh geokrilogicheskikh usloviyakh // Pochvovedenie. 2018. N 6. P. 674–682.
39. Glagolev M., Kleptsova I., Filippov I., Maksyutov S., Machida T. Regional methane emission from West Siberia mire landscapes // Environ. Res. Lett. 2011. V. 6, N 4. P. 045214. DOI: 10.1088/1748-9326/6/4/045214.
40. Sabrekov A.F., Runkle B.R.K., Glagolev M.V., Kleptsova I.E., Maksyutov S.S. Seasonal variability as a source of uncertainty in the West Siberian regional CH4 flux upscaling // Environ. Res. Lett. 2014. V. 9, N 4. P. 045008. DOI: 10.1088/1748-9326/9/4/045008.
41. Sabrekov A.F., Runkle B.R.K., Glagolev M.V., Terentieva I.E., Stepanenko V.M., Kotsyurbenko O.R., Maksyutov S.S., Pokrovsky O.S. Variability in methane emissions from West Siberia’s shallow boreal lakes on a regional scale and its environmental controls // Biogeosci. 2017. V. 14, N 15. P. 3715–3742. DOI: 10.5194/bg-14-3715-2017.
42. Sabrekov A.F., Filippov I.V., Glagolev M.V., Terent'eva I.E., Il'yasov D.V., Koshorbenko O.R., Maksyutov Sh.Sh. Emissiya metana trostnikovymi bolotami lesostepi i podtaigi Zapadnoi Sibiri // Meteorol. i gidrol. 2016. N 1. P. 53–59.
43. Veretennikova E.E., Dyukarev E.A. Comparison of methane fluxes of open and forested bogs of the southern taiga zone of Western Siberia // Boreal Environ. Res. 2021. V. 26, N 1–6. P. 43–59.
44. Arshinov M.Yu., Belan B.D., Davydov D.K., Maksutov Sh.Sh., Fofonov A.V. Comparison of flows of greenhouse gases at the atmosphere–soil interface for three areas of the Tomsk Region // Proc. SPIE. 2020. V. 11560. P. 115607M. DOI: 10.1117/12.2576745.
45. Gong Y., Wu J., Vogt J., Le T.B., Yuan T. Combination of warming and vegetation composition change strengthens the environmental controls on N2O fluxes in a boreal peatland // Atmosphere. 2018. V. 9, N 12. P. 480. DOI: 10.3390/atmos9120480.
46. Tangen B.A., Bansa A. Prairie wetlands as sources or sinks of nitrous oxide: Effects of land use and hydrology // Agricult. Forest Meteorol. 2022. V. 320. P. 108968. DOI: 10.1016/j.agrformet.2022.108968.
47. Li J., Jin Y., Liu Y., Zhang Y., Grace J., Song Q., Sha L., Lin Y., Chen A., Li P., Fei X. Effect of precipitation exclusion on N2O emissions in a savanna ecosystem in SW China // Atmos. Environ. 2018. V. 187. P. 1–8. DOI: 10.1016/j.atmosenv.2018.05.035.
48. Wangari E.G., Mwanake R.M., Kraus D., Werner C., Gettel G.M., Kiese R., Breuer L., Butterbach-Bahl K., Houska T. Number of chamber measurement locations for accurate quantification of landscape-scale greenhouse gas fluxes: Importance of land use, seasonality, and greenhouse gas type // J. Geophys. Res.: Biogeosci. 2022. V. 127, N 9. P. E2022JG006901. DOI: 10.1029/2022JG006901.
49. Zou J., Tobin B., Luo Y., Osborne B. Differential responses of soil CO2 and N2O fluxes to experimental warming // Agricult. Forest Meteorol. 2018. V. 259. P. 11–22.
50. Kurganova I.N., Lopes de Gerenyu V.O., Myakshina T.N., Sapronov D.V., Khoroshaev D.A., Ableeva V.A. Temperaturnaya chuvstvitel'nost' dykhaniya pochv lugovykh tsenozov v zone umerenno-kontinental'nogo klimata: analiz dannykh 25-letnego monitoringa // Почвоведение. 2023. N 9. P. 10591076. DOI: 10.31857/S0032180X23600476.
51. Ueyama M., Takeuchi R., Takahashi Y., Ide R., Ataka M., Kosugi Y., Takahashi K., Saigusa N. Methane uptake in a temperate forest soil using continuous closed-chamber measurements // Agricult. Forest Meteorol. 2015. V. 213. P. 1–9. DOI: 10.2480/agrmet.D-23-00013.
52. Cai Y., Sawada K., Hirota M. Spatial variation in forest soil respiration: A systematic review of field observations at the global scale // Sci. Total Environ. 2023. V. 874. P. 162348. DOI: 10.1016/j.scitotenv.2023. 162348.
53. Brændholt A., Larsen K.S., Ibrom A., Pilegaard K. Overestimation of closed-chamber soil CO2 effluxes at low atmospheric turbulence // Biogeosci. 2017. V. 14, N 6. P. 1603–1616. DOI: 10.5194/bg-14-1603-2017.
54. Kandel T.P., Lærke P.E., Elsgaard L. Annual emissions of CO2, CH4, and N2O from a temperate peat bog: Comparison of an undrained and four drained sites under permanent grass and arable crop rotations with cereals and potato // Agricult. Forest Meteorol. 2018. V. 256–257. P. 470–481. DOI: 10.1016/j.agrformet.2018.03.021.