Vol. 37, issue 09, article # 1
Copy the reference to clipboard
Abstract:
Three-dimensional transport and transformation models make it possible to take into account the vertical heterogeneity of atmospheric processes. However their use requires setting a large number of parameters and significant computing resources, especially when solving inverse and data assimilation problems. A new data assimilation algorithm for a three-dimensional transport and transformation model with unknown emission sources is presented, which uses an approach based on sensitivity operators and ensembles of solutions of adjoint equations implemented in the IMDAF inverse modeling system for distributed memory computers. When tested in a realistic Baikal region scenario, the algorithm enabled, based on the data of integrated vertical measurements simulating remote sensing data, reducing the error in the concentration field by 15%. With the given vertical level of the source location, the errors in the concentration field and in the source were reduced by 93% and 85%, respectively.
Keywords:
data assimilation, source identification, advection-diffusion-reaction, sensitivity operator, adjoint equations
References:
1. Grell G.A., Peckham S., Schmitz R., Mckeen S., Frost G., Skamarock W., Eder B. Fully coupled chemistry within the WRF model // Atmos. Environ. 2005. V. 39, N 37. P. 6957–6975. DOI: 10.1016/j.atmosenv.2005.04.027.
2. Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X.-Y., Wang W., Powers J.G. A Description of the advanced research WRF Version 4. figshare // J. Contrib. 2019. DOI: 10.6084/m9.figshare.7369994.v4.
3. Knote C., Brunner D., Vogel H., Allan J., Asmi A., Äijälä M., Carbone S., Gon H., Jimenez J., Kiendler-Scharr A., Mohr C., Poulain L., Prévôt A., Swietlicki E., Vogel B. Towards an online-coupled chemistry-climate model: Evaluation of trace gases and aerosols in COSMO-ART // Geosci. Model Develop. 2011. V. 4, N 4. P. 1077–1102. DOI: 10.5194/gmd-4-1077-2011.
4. Baklanov A., Korsholm U., Mahura A., Petersen C., Grosset A. ENVIRO-HIRLAM: On-line coupled modelling of urban meteorology and air pollution // Adv. Sci. Res. 2008. V. 2, N 1. P. 41–46.
5. Bocquet M., Elbern H., Eskes H., Hirtl M., Zabkar R., Carmichael G.R., Flemming J., Inness A., Pagowski M., Prez Camano J.L., Saide P.E., San Jose R., Sofiev M., Vira J., Baklanov A., Carnevale C., Grell G., Seigneur C. Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models // Atmos. Chem. Phys. Discuss. 2014. V. 14, N 23. P. 32233–32323. DOI: 10.5194/acpd-14-32233-2014.
6. Carrassi A., Bocquet M., Bertino L., Evensen G. Data assimilation in the geosciences: An overview of methods, issues, and perspectives // WIREs. 2018. V. 9, N 5. P. e535. DOI: 10.1002/wcc.535.
7. Penenko V.V., Obraztsov N.N. A variational initialization method for the fields of the meteorological elements // English translations Soviet Meteorol. Hydrol. 1976. V. 11. P. 3–16.
8. Dimet F.-X.L., Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects // Tellus. 1986. V. 38A. P. 97–110. DOI: 10.3402/tellusa.v38i2.11706.
9. Elbern H., Strunk A., Schmidt H., Talagrand O. Emission rate and chemical state estimation by 4-dimensional variational inversion // Atmos. Chem. Phys. Discuss. 2007. V. 7, N 1. P. 1725–1783. DOI: 10.5194/acpd-7-1725-2007.
10. Carmichael G.R., Sandu A., Chai T., Daescu D.N., Constantinescu E.M., Tang Y. Predicting air quality: Improvements through advanced methods to integrate models and measurements // J. Comput. Phys. 2008. V. 227, N 7. P. 3540–3571. DOI: 10.1016/j.jcp.2007.02.024.
11. Marchuk G.I. Matematicheskoe modelirovanie v probleme okruzhayushchej sredy. M.: Nauka, 1982. 319 p.
12. Errico R.M. What is an adjoint model? // Bull. Am. Meteorol. Soc. 1997. V. 78, N 11. P. 2577–2591. DOI: 10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2.
13. Hakami A., Henze D.K., Seinfeld J.H., Singh K., Sandu A., Kim S., Byun D., Li Q. The adjoint of CMAQ // Environ. Sci. Technol. 2007. V. 41, N 22. P. 7807–7817. DOI: 10.1021/es070944p.
14. Penenko V.V., Penenko A.V., Tsvetova E.A., Gochakov A.V. Methods for studying the sensitivity of air quality models and inverse problems of geophysical hydrothermodynamics // J. Appl. Mech. Tech. Phys. 2019. V. 60, N 2. P. 392–399. DOI: 10.1134/S0021894419020202.
15. Penenko A. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements // Inverse Probl. Imaging. 2020. V. 14, N 5. P. 757–782. DOI: 10.13140/RG.2.2.26550.14409.
16. Penenko A., Penenko V., Tsvetova E., Gochakov A., Pyanova E., Konopleva V. Sensitivity operator framework for analyzing heterogeneous air quality monitoring systems // Atmosphere. 2021. V. 12, N 12. P. 16971. DOI: 10.3390/atmos12121697.
17. Penenko A., Rusin E. Parallel implementation of a sensitivity operator-based source identification algorithm for distributed memory computers // Mathematics. 2022. V. 10, N 23. P. 45221. DOI: 10.3390/math10234522.
18. Marchuk G.I. O postanovke nekotoryh obratnyh zadach // Doklady AN SSSR. 1964. N 3. P. 503–506.
19. Penenko A., Emelyanov M., Rusin E., Tsybenova E., Shablyko V. Hybrid deep learning and sensitivity operator-based algorithm for identification of localized emission sources // Mathematics. 2023. V. 12, N 1. P. 781. DOI: 10.1109/OPCS59592.2023.10275758.
20. Penenko A.V. Algorithms for the inverse modelling of transport and transformation of atmospheric pollutants // IOP Conf. Ser.: Earth Environ. Sci. 2018. V. 211. P. 012052-1–012052-8. DOI: 10.1088/1755-1315/211/1/012052.
21. Penenko A.V., Rusin E.V., Penenko V.V. Emission sources identification scenario for a three-dimensional atmospheric transport and transformation model // Proc. SPIE / O.A. Romanovskii (ed.). 2023. V. 1278068. DOI: 10.1117/12.2690844.
22. Markakis K., Valari M., Perrussel O., Sanchez O., Honore C. Climate-forced air-quality modeling at the urban scale: Sensitivity to model resolution, emissions and meteorology // Atmos. Chem. Phys. 2015. V. 15, N 13. P. 7703–7723. DOI: 10.5194/acp-15-7703-2015.
23. Holnicki P., Nahorski Z. Emission data uncertainty in urban air quality modeling – case study // Environ. Model. Assess. 2015. V. 20, N 6. P. 583–597. DOI: 10.1007/s10666-015-9445-7.
24. Hong S.-Y., Dudhia J., Chen S.-H. A Revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation // Mon. Weather Rev. Am. Meteorol. Soc. 2004. V. 132, N 1. P. 103–120. DOI: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
25. Mlawer E.J., Taubman S.J., Brown P., Iacono M., Clough S. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated - k model for the longwave // J. Geophys. Res.: Atmos. 1997. V. 102, N D14. P. 16663–16682. DOI: 10.1029/97JD00237.
26. Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model // J. Atmos. Sci. Am. Meteorol. Soc. 1989. V. 46, N 20. P. 3077–3107. DOI: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
27. Hong S.-Y., Noh Y., Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes // Mon. Weather Rev. Am. Meteorol. Soc. 2006. V. 134, N 9. P. 2318–2341. DOI: 10.1175/MWR3199.1.
28. Beljaars A.C.M. The parametrization of surface fluxes in large-scale models under free convection // Q. J. R. Meteorol. Soc. 1995. V. 121, N 522. P. 255–270.
29. Chen F., Dudhia J. Coupling an advanced land surface – hydrology model with the Penn state – NCAR MM5 modeling system. Part I: Model implementation and sensitivity // Mon. Weather Rev. Am. Meteorol. Soc. 2001. V. 129, N 4. P. 569–585. DOI: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
30. Antokhin P.N., Gochakov A.V., Kolker A.B., Penenko A.V. Sravnenie rezul'tatov raschetov himiko-transportnoj modeli WRF-Chem s dannymi samoletnyh izmerenij v g. Noril'sk // Optika atmosf. i okeana. 2018. V. 31, N 4. P. 282–287. DOI: 10.15372/AOO20180406; Antokhin P.N., Gochakov A.V., Kolker A.B., Penenko A.V. Comparison of WRF-Chem chemical transport model calculations with aircraft measurements in Norilsk // Atmos. Ocean. Opt. 2018. V. 31, N 4. P. 372–380.
31. National Centers for Environmental Prediction/ National Weather Service/NOAA/U.S. Department of Commerce. 2000, updated daily. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. DOI: 10.5065/D6M043C6 (last access: 26.08.2024).