Vol. 37, issue 08, article # 6

Russkova T. V., Shishko V. A. Statistical simulation of space lidar pulse propagation in cirrus clouds taking into account multiple scattering. // Optika Atmosfery i Okeana. 2024. V. 37. No. 08. P. 665–673. DOI: 10.15372/AOO20240806 [in Russian].
Copy the reference to clipboard

Abstract:

Laser remote sensing of cirrus clouds is accompanied by the problem of taking into account the multiple scattering of radiation, which influences the reliability of measurement interpretation. The contribution of multiple scattering of radiation to echo signals of a space-borne lidar is estimated. The non-stationary problem of laser pulse propagation in continuous cirrus clouds with separation by scattering multiplicities is solved by the Monte Carlo method at different values of the optical-microstructural characteristics of clouds (optical thickness and shape and size of ice particles) and lidar parameters (distance from the sensing object, radiation divergence, and field of view angle of the receiver). Numerical experiments were carried out taking into account the permissible range of the parameter for operational or promising space-borne lidar systems. The features of the formation of the return signal when aerosol and Rayleigh particles, as well as the underlying cloud layer, are introduced into an atmospheric model are discussed. The simulation results indicate the high sensitivity of the part of an echo signal caused by multiply scattered radiation to the parameters under study, which should be taken into account when formulating and solving inverse problems.

Keywords:

space-borne lidar, remote sensing, multiple scattering, cirrus cloud, numerical simulation, Monte Carlo method

References:

1. Winker D.M., Couch R.H., McCormick M.P. An overview of LITE: NASA’s Lidar In-space Technology Experiment // Proc. IEEE. 1996. V. 84, N 2. P. 164–180. DOI: 10.1109/5.482227.
2. Zuev V.E., Balin Yu.S., Tikhomirov A.A., Znamenskii I.V., Mel'nikov V.E. Rossiiskii lidar kosmicheskogo bazirovaniya BALKAN // Kosmicheskaya nauka i tekhnologiya. 1997. V. 3, N 1. P. 16–25.
3. Chanin M.A., Hauchecorne A., Malique C., Nedeljkovic D., Blamont J.-E., Desbois M., Tulinov G., Melnikov V. First results of the ALISSA lidar on board the MIR platform // Comptes Rendus de l'Académie des Sciences – Series IIA – Earth and Planetary Science. 1999. V. 328, N 6. P. 359–366.
4. Cloud-Aerosol Transport System (CATS) [Elektronnyj resurs]. URL: https://cats.gsfc.nasa.gov/ (last access: 08.11.2023).
5. Winker D.M., Vaughan M., Omar A., Hu Y., Powell K., Liu Z., Hunt W., Young S. Overview of the CALIPSO Mission and CALIOP data processing algorithms // J. Atmos. Ocean. Technol. 2009. V. 26, N 11. P. 2310–2323.
6. Fizika oblakov / pod red. A.Kh. Khrgiana. L.: Gidrometeoizdat, 1961. 460 p.
7. Bi L., Yang P., Kattawar G.W., Hu Y., Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method // J. Quant. Spectrosc. Radiant. Transfer. 2011. V. 112, N 9. P. 1492–1508. DOI: 10.1016/j.jqsrt.2011.02.015.
8. Konoshonkin A.V., Kustova N.V., Borovoi A.G., Grynko Y., Förstner J. Light scattering by ice crystals of cirrus clouds: Comparison of the physical optics methods // J. Quant. Spectrosc. Radiant. Transfer. 2016. V. 182. P. 12–23. DOI: 10.1051/epjconf/202023708011.
9. Balin Y.S., Samoilova S.V., Krekova M.M., Winker D.M. Retrieval of cloud optical parameters from space-based backscatter lidar data // Appl. Opt. 1999. V. 38, N 30. P. 6365–6373. DOI: 10.1364/ao.38.006365.
10. Wang X., Boselli A., D’Avino L., Velotta R., Spinelli N., Bruscaglioni P., Ismaelli A., Zaccanti G. An algorithm to determine cirrus properties from analysis of multiple-scattering influence on lidar signal // Appl. Phys. B. 2005. V. 80. P. 609–615. DOI: 10.1007/s00340-005-1765-x.
11. Davis A.B., Marshak A. Solar radiation transport in the cloudy atmosphere: A 3D perspective on observations and climate impacts // Rep. Prog. Phys. 2010. V. 73. P. 1–70. DOI: 10.1088/0034-4885/73/2/026801.
12. Korshunov V.A. Mnogokratnoe rasseyanie v peristykh oblakakh i ego uchet pri interpretatsii lidarnykh izmerenii v stratosfere // Optika atmosf. i okeana. 2021. V. 34, N 12. P. 969–975. DOI: 10.15372/AOO20211207; Korshunov V.A. Multiple scattering in cirrus clouds and taking it into account when interpreting lidar measurements in the stratosphere // Atmos. Ocean. Opt. 2022. V. 35, N 2. P. 151–157.
13. Bissonnette L.R., Hutt D.L. Multiply scattered aerosol lidar returns: Inversion method and comparison with in situ measurements // Appl. Opt. 1995. V. 34, N 30. P. 6959–6975. DOI: 10.1364/AO.34.006959.
14. Krekova M.M. Raschet struktury signala orbital'nogo lidara, otrazhennogo oblakami verkhnego yarusa // Optika atmosf. i okeana. 1999. V. 12, N 4. P. 376–381.
15. Prigarin S.M. Statisticheskoi modelirovanie effektov, svyazannykh s mnogokratnym rasseyaniem impul'sov nazemnykh i kosmicheskikh lidarov v oblachnoi atmosfere // Optika atmosf. i okeana. 2016. V. 29, N 9. P. 747–751. DOI: 10.15372/AOO20160904; Prigarin S.M. Monte Carlo simulation of the effects caused by multiple scattering of ground-based and spaceborne lidar pulses in clouds // Atmos. Ocean. Opt. 2017. V. 30, N 1. P. 79–83.
16. Oppel U. Hierarchy of models for lidar multipler scattering and its applications for simulation and analysis of spaceborne lidar returns // Proc. SPIE. 2000. V. 4341. DOI: 10.1117/12.411949.
17. Russkova T.V., Shishko V.A. Statisticheskoe modelirovanie perenosa lazernogo izlucheniya v peristykh oblakakh s uchetom mnogokratnogo rasseyaniya // Optika atmosf. i okeana. 2023. V. 36, N 3. P. 214–223. DOI: 10.15372/AOO20230308; Russkova T.V., Shishko V.A. Statistical simulation of laser pulse propagation in cirrus clouds accounting for multiple scattering // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 384–393.
18. Elastic Lidar. Theory, Practice, and Analysis Methods / V.A. Kovalev, W.E. Eichinger (eds.). Hoboken: Wiley-Interscience, 2004. 640 p.
19. Marchuk G.I., Mikhailov G.A., Nazaraliev M.A., Darbinyan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoi optike. Novosibirsk: Nauka, 1976. 280 p.
20. Hess M., Koepke P., Schult I. Optical properties of aerosols and clouds: The software package OPAC // Bull. Am. Meteorol. Soc. 1998. V. 79, N 5. P. 831–844. DOI: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.
21. Anderson G.P., Clough S.A., Kneizys F.X., Chetwynd J.H., Shettle E.P. AFGL Atmospheric Constituent Profiles (0–120 km). Environmental Research Papers, No. 954 (Air Force Geophysics Laboratory, Hanscom AFB, MA, 1986).
22. Bryukhanov I.D., Kuchinskaya O.I., Ni E.V., Penzin M.S., Zhivotenyuk I.V., Doroshkevich A.A., Kirillov N.S., Stykon A.P., Bryukhanova V.V., Samokhvalov I.V. Opticheskie i geometricheskie kharakteristiki oblakov verkhnego yarusa po dannym lazernogo polyarizatsionnogo zondirovaniya 2009–2023 years v Tomske // Optika atmosf. i okeana. 2024. V. 37, N 2. P. 105–113. DOI: 10.15372/AOO20240203.
23. Shishko V., Konoshonkin A., Kustova N., Borovoi A., Timofeev D. Light scattering by particles with arbitrary shape in the vicinity of the backward scattering direction within geometrical optics approximation // EPJ Web Conference, 2020. V. 237. P. 08012. DOI: 10.1051/epjconf/202023708012.
24. Yang P., Wei H., Huang H.-L., Baum B.A., Hu Y.X., Kattawar G.W., Mishchenko M.I., Fu Q. Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region // Appl. Opt. 2005. V. 44, N 26. P. 5512–5523. DOI: 10.1364/AO.44.005512.
25. Baum B.A., Yang P., Heymsfield A.J., Bansemer A., Merrelli A., Schmitt C., Wang C. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm // J. Quant. Spectrosc. Radiant. Transfer. 2014. V. 146. P. 123–139. DOI: 10.1016/j.jqsrt.2014.02.029.
26. Dai G., Wu S., Long W., Liu J., Xie Y., Sun K., Meng F., Song X., Huang Z., Chen W. Aerosols and clouds data processing and optical properties retrieval algorithms for the spaceborne ACDL/DQ-1 // EGUsphere. Preprint under review for AMT, 2023. DOI: 10.5194/amt-17-1879-2024.
27. Wang X., Cheng X., Gong P., Huang H., Li Z., Li X. Earth science applications of ICESat/GLAS: A review // Remote Sens. 2011. V. 32, N 23. P. 8837–8864. DOI: 10.1080/01431161.2010.547533.
28. Héliere A., Gelsthorpe R., Le Hors L., Toulemont Y. ATLID, the atmospheric lidar on board the Earth-Care Satellite // Proc. SPIE. 2017. V. 10564. DOI: 10.1117/12.2309095.
29. Daisuke S., Trung N.T., Rei M., Yoshito S., Tadashi I., Toshiyoshi K. Progress of the ISS Based Vegetation LiDAR Mission, Moli – Japan’s First Space-Based Lidar // IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA. 2020. P. 3467–3470.
30. ATLAS/ICESat-2 L3A Calibrated Backscatter Profiles and Atmospheric Layer Characteristics, Version 6. URL: https://nsidc.org/sites/default/files/documents/user-guide/atl09-v006-userguide.pdf (last access: 08.11.2023).