Vol. 37, issue 07, article # 9

Loboda E. L., Razenkov I. A., Agafontsev M. V., Reino V. V. Study of the effect of a wildfire on the local characteristics of the atmosphere using remote sensing methods. // Optika Atmosfery i Okeana. 2024. V. 37. No. 07. P. 602–608. DOI: 10.15372/AOO20240709 [in Russian].
Copy the reference to clipboard

Abstract:

This paper presents the results of an experiment on remote sensing of a smoke plume over a model fire with the use of a specialized lidar based on the backscatter enhancement effect and detecting optical turbulence. Burning was 1.600 m away, and the area of the model fire varied from 1, 9 and 25 m2. It was found that during combustion, the lidar recorded an increase in the echo signal in the main receiving channel, which registers aerosol scattering and the turbulent component, relative to an echo signal in the additional receiving channel, which registers only the aerosol. The width of the smoke plume did not exceed 20 m, an increase in the main echo signal was observed immediately after the plume in the distance range up to 300 m. In this experiment, a plume of warm smoke acted as a phase screen that changed the coherent structure of the laser beam. After the completion of intensive combustion, the temperature inside the plume rapidly decreased and the lidar recorded only the aerosol content. The appearance of two signs in the echo signal – an increase in the aerosol concentration and turbulence intensity – clearly indicates a source of burning. The lidar estimation of the values of the structural characteristic of the refractive index Cn2 at an altitude of 10 m above the combustion focus was compared with the data of the ultrasonic meteorological station AMK-03 at an altitude of 3 m and results of simulation of a grass-roots fire published earlier.

Keywords:

wildfire, combustion, lidar, turbulence, aerosol

References:

1. Mazurin N.F., Kulizhnikova L.K. Sravnenie priborov dlya izmereniya kharakteristik atmosfernoi turbulentnosti // Meteorol. i gidrol. 2008. N 11. P. 90–96.
2. Torgaev A.V., Kazakov D.V., Lukin V.P. Izmereniya parametrov atmosfery na protyazhennoi trasse. I. Akusticheskie izmereniya urovnya turbulentnosti i srednei skorosti vetra // Optika atmosf. i okeana. 2023. V. 36, N 5. P. 371–376. DOI: 10.15372/AOO20230506.
3. Gladkikh V.A., Odintsov S.L. Turbulentnyi potok tepla v prizemnom sloe atmosfery i ego vliyanie na vneshnii masshtab turbulentnosti // Izv. vuzov. Fizika. 2017. V. 60, N 6. P. 128–134.
4. Borzilov A.G., Konyaev P.A., Lukin V.P., Soin E.L. Izmereniya parametrov atmosfery na protyazhennoi trasse. II. Opticheskie izmereniya urovnya turbulentnosti // Optika atmosf. i okeana. 2023. V. 36, N 7. P. 557–562. DOI: 10.15372/AOO20230704.
5. Vil'danov R.R., Eshonkulov G.B. Izmerenie opticheskikh kharakteristik atmosfery lazernoi geterodinnoi sistemoi // ZHurn. prikl spektroskop. 2008. V. 75, N 6. P. 906–908.
6. Lukin V.P., Lukin I.P. Obzor sovremennykh tekhnologii izmereniya, prognozirovaniya i korrektsii turbulentnykh iskazhenii v opticheskikh volnakh // Komp'yuternaya optikа. 2024. V. 48, N 1. P. 68–80. DOI: 10.18287/2412-6179-CO-1355.
7. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove effekta usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655.
8. Kutsenogii K.P., Samsonov Yu.N., Churkina T.V., Ivanov A.V., Ivanov V.A. Soderzhanie mikroelementov v aerozol'noi emissii pri pozharakh v boreal'nykh lesakh tsentral'noi Sibiri // Optika atmosf. i okeana. 2003. V. 16, N 5–6. P. 461–465.
9. Grishin A.M., Alekseev N.A., Brabander O.P., Zal'mezh V.F. Rasprostranenie v prizemnom sloe atmosfery termikov, voznikayushchikh pri lesnykh pozharakh // Teplofizika lesnykh pozharov. Novosibirsk: ITF SO AN SSSR, 1984. P. 76–85.
10. Grishin A.M., Kataeva L.Yu., Alekseenko E.M. Issledovanie vliyaniya okruzhayushchei sredy i sloya inversii na parametry dvizheniya odnoskorostnogo, odnotemperaturnogo i odnofaznogo termika // Sopryazhennye zadachi mekhaniki i ekologii: izbrannye dokl. mezhdunar. konf. 2000. P. 174–190.
11. Loboda E., Kasymov D., Agafontsev M., Reyno V., Lutsenko A., Staroseltseva A., Perminov V., Martynov P., Loboda Yu., Orlov K. Crown fire modeling and its effect on atmospheric characteristics // Atmosphere. 2022. V. 13, N 12. P. 1982. DOI: 10.3390/atmos13121982.
12. Vinogradov A.G., Gurvich A.S., Kashkarov S.S., Kravtsov Yu.A., Tatarskii V.I. «Zakonomernost' uvelicheniya obratnogo rasseyaniya voln». Svidetel'stvo na otkrytie N 359. Prioritet otkrytiya: 25 august 1972 year v chasti teoreticheskogo obosnovaniya i 12 august 1976 year v chasti eksperimental'nogo dokazatel'stva zakonomernosti. Gosudarstvennyi reestr otkrytii SSSR // Byull. izobretenii. 1989. N 21.
13 Kravtsov Yu.A., Saichev A.I. Effekty dvukratnogo prokhozhdeniya voln v sluchaino neodnorodnykh sredakh // Uspekhi fizicheskikh nauk. 1982. V. 137, iss. 3. P. 501–527.
14. Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
15. Ustroistvo dlya registratsii usileniya obratnogo rasseyaniya v atmosfere: Pat. na poleznuyu model' N 153460. Russia. Razenkov I.A., Banakh V.A., Nadeev A.I.; Zaregistrirovano v Gosudarstvennom reestre poleznykh modelei Rossiiskoi Federatsii 24 june 2015 year.
16. Razenkov I.A., Nadeev A.I., Zaitsev N.G., Gordeev E.V. Ul'trafioletovyi turbulentnyi lidar UOR-5 // Optika atmosf. i okeana. 2020. V. 33, N 4. P. 289–297. DOI: 10.15372/AOO20200407; Razenkov I.A., Nadeev A.I., Zaitsev N.G., Gordeev E.V. Turbulent UV Lidar BSE-5 // Atmos. Ocean. Opt. 2020. V. 33, N 4. P. 406–414.
17. Tatarskii V.I. Rasprostranenie voln v turbulentnoi atmosfere. M.: Nauka, 1967. 548 p.
18. Isimaru A. Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh. V. 2. M.: Mir, 1981. 318 p.
19. Loboda E.L., Kasymov D.P., Agafontsev M.V., Reino V.V., Gordeev E.V., Tarkanova V.A., Martynov P.S., Orlov K.E., Savin K.V., Dutov A.I., Loboda Yu.A. Vliyanie malykh prirodnykh pozharov na kharakteristiki atmosfery vblizi ochaga goreniya // Optika atmosf. i okeana. 2020. V. 33, N 10. P. 818–823. DOI: 10.15372/AOO20201011.