Vol. 37, issue 07, article # 3

Sharybkina K. K., Naumenko O. V. Vibrational energy levels for sulfur dioxide isotopologues. // Optika Atmosfery i Okeana. 2024. V. 37. No. 07. P. 554–562. DOI: 10.15372/AOO20240703 [in Russian].
Copy the reference to clipboard

Abstract:

For five isotopologues of the SO2 molecule: 32S16O2, 34S16O2, 33S16O2, 32S18O2, 32S16O18O, parameters of the effective vibrational Hamiltonian are derived from fitting to the available experimental data and with the use of the basic relations of the isotope substitution theory. Vibrational constants obtained from the fit reproduce the experimental vibrational energy levels within 0.025 cm-1 for symmetric isotopologues. The found vibrational energy levels are compared with the variational calculation data, and the quantum numbers for 93 vibrational states are corrected.

Keywords:

sulfur dioxide, SO2, effective Hamiltonian, vibrational energy, isotopologue

References:

1. Smale D., Hannigan J.W., Lad S., Murphy M., McGaw J., Robinson J. Opportunistic observations of Mount Erebus volcanic plume HCl, HF, and SO2 by high resolution solar occultation mid infra-red spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2023. V. 307. P. 108665. DOI: 10.1016/j.jqsrt.2023.108665.
2. Halevy I., Zuber M.T., Schrag D.P. A sulfur dioxide climate feedback on early Mars // Science. 2007. V. 318, N 5858. P. 1903–1907. DOI: 10.1126/science.1147039.
3. Feaga L.M., McGrath M., Feldman P.D. Io’s dayside SO2 atmosphere // Icarus. 2009. V. 201, N 2. P. 570–584. DOI: 10.1016/j.icarus.2009.01.029.
4. Mahieux A., Robert S., Mills F.P., Jessup K.L., Trompet L., Aoki S., Piccialli A., Peralta J., Vandaele A.C. Update on SO2, detection of OCS, CS, CS2, and SO3, and upper limits of H2S and HOCl in the Venus mesosphere using SOIR on board Venus Express // Icarus. 2023. V. 399. P. 115556. DOI: 10.1016/j.icarus.2023.115556.
5. Huang X., Schwenke D.W., Lee T.J. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for 32S16O2 up to 8000 cm−1 // J. Chem. Phys. 2014. V. 140. P. 114311. DOI: 10.1063/1.4868327.
6. Yamanouchi K., Takeuchi S., Tsuchiya S. Vibrational level structure of highly excited SO2 in the electronic ground state. II. Vibrational assignment by dispersed fluorescence and stimulated emission pumping spectroscopy // J. Chem. Phys. 1990. V. 92, N 7. P. 4044–4054. DOI: 10.1063/1.457766.
7. Ballaa M.R., Venigallab S., Jaliparthi V. Calculation of vibrational frequencies of sulfur dioxide by Lie algebraic framework // Acta Phys. Pol. A. 2021. V. 140, N 3. P. 138–140. DOI: 10.12693/APhysPolA.140.138.
8. Huang X. Ames Molecular Spectroscopic Data For Astrophysical And Atmospheric Studies. URL: http:// huang.seti.org/ (last access: 19.01.2024).
9. Bykov A.D., Makushkin Yu.S., Ulenikov O.N. The vibrational analysis of H2O // J. Mol. Spectrosc. 1983. V. 99. P. 221–227. DOI: 10.1016/0022-2852(83)90305-3.
10. Bykov A.D., Makushkin Yu.S., Ulenikov O.N. Izotopozameshchenie v mnogoatomnykh molekulakh. Novosibirsk: Nauka, 1985. 157 p.
11. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Quack M. Extended analysis of the high resolution FTIR spectrum of 32S16O2 in the region of the ν2 band: Line positions, strengths, and pressure broadening widths // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 210. P. 141–155. DOI: 10.1016/j.jqsrt.2018.02.010.
12. Ulenikov O.N., Onopenko G.A., Gromova O.V., Bekhtereva E.S., Horneman V.-M. Re-analysis of the (100), (001), and (020) rotational structure of SO2 on the basis of high resolution FTIR spectra // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 220–232. DOI: 10.1016/j.jqsrt.2013.04.011.
13. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Berezkin K.B., Horneman V.-M., Sydow C., Maul C., Bauerecker S. First high resolution analysis of the 3ν2 and 3ν2 - ν2 bands of 32S16O2 // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 202. P. 1–5. DOI: 10.1016/j.jqsrt.2017.07.012.
14. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Bolotova I.B., Leroy C., Horneman V.-M., Alanko S. High resolution study of the ν1 + 2 - ν2 and 2ν2 + ν3 - ν2 “hot” bands and ro-vibrational re-analysis of the ν1 + ν22 + ν3/3ν2 polyad of the 32SO2 molecule // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 486–512. DOI: 10.1016/j.jqsrt.2010.09.013.
15 . Lafferty W.J., Flaud J.-M., Guelachvili G. Analysis of the 2ν1 band system of SO2 // J. Mol. Spectrosc. 1998. V. 188. P. 106–107. DOI: 10.1006/jmsp.1997.7493.
16. Lafferty W.J., Pine A.S., Hilpert G., Sams R.L., Flaud J.-M. The ν1 + ν3 and 2ν1 + ν3 band systems of SO2: Line positions and intensities // J. Mol. Spectrosc. 1996. V. 176. P. 280–286. DOI: 10.1006/jmsp.1996.0088.
17. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Bolotova I.B., Konov I.A., Horneman V.-M., Leroy C. High resolution analysis of the SO2 spectrum in the 2600–2900 region: 2ν3, ν2 + 3 - ν2 and 2ν1 + ν2 bands // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113. P. 500–517. DOI: 10.1016/j.jqsrt.2012.01.006.
18. Ulenikov O.N., Bekhtereva E.S., Horneman V.-M., Alanko S., Gromova O.V. High resolution study of the 3ν1 band of SO2 // J. Mol. Spectrosc. 2009. V. 255. P. 111–121. DOI: 10.1016/j.jms.2009.03.009.
19. Vasilenko I.A., Naumenko O.V., Horneman V.-M. Ekspertnyi spisok linii pogloshcheniya molekuly 32S16O2 v diapazone 0–4200 cm-1 // Optika atmosf. i okeana. 2023. V. 36, N 1. P. 5–11. DOI: 10.15372/AOO20230101; Vasilenko I.A., Naumenko O.V., Horneman V.-M. Expert list of absorption lines of the 32S16O2 molecule in the 0–4200 cm-1 spectral region // Atmos. Ocean. Opt. 2023. V. 36, N 3. P. 199–206.
20. Sharybkina K.K., Vasilenko I.A., Naumenko O.V., Horneman V.-M. Fourier transform absorption spectrum of SO2 in 3500–3700 cm-1 spectral region // XX Symposium on High Resolution Molecular Spectroscopy HighRus-2023: Abstracts of Reports. Томск: Изд-во ИОА СО РАН, 2023. 160 с.
21. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Alanko S., Horneman V.-M., Leroy C. Analysis of highly excited “hot” bands in the SO2 molecule: ν2 + 3 - ν2 and 2ν1 + ν2 + ν3 - ν2 // Mol. Phys. 2010. V. 108. P. 1253–1261. DOI: 10.1080/00268970903468297.
22. Ulenikov O.N., Bekhtereva E.S., Alanko S., Horneman V.-M., Gromova O.V., Leroy C. On the high resolution spectroscopy and intramolecular potential function of SO2 // J. Mol. Spectrosc. 2009. V. 257. P. 137–156. DOI: 10.1016/j.jms.2009.07.005.
23. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Ziat­kova A.G., Quack M., Mellau G.Ch., Sydow C., Bauerecker S. First line strength analysis of 34SO2 in the ν2 region: Isotopic relations for the dipole moment parameters // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 229. P. 166–178. DOI: 10.1016/j.jqsrt.2018.11.031.
24. Lafferty W.J., Flaud J.-M., Sams R.L., Ngom E.H.A. High resolution analysis of the rotational levels of the (000), (010), (100), (001), (020), (110), and (011) vibrational states of 34S16O2 // J. Mol. Spectrosc. 2008. V. 252. P. 72–76. DOI: 10.1016/j.jms.2008.06.013.
25. Lafferty W.J., Flaud J.-M., Sams R.L., Ngom E.H.A. 34S16O2 high resolution analysis of the (030), (101), (111), (002), and (201) vibrational states; determination of equilibrium rotational constants for sulfur dioxide and anharmonic vibrational constants // J. Mol. Spectrosc. 2009. V. 253. P. 51–54. DOI: 10.1016/j.jms.2008.09.006.
26. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Buttersack T., Sydow C., Bauerecker S. High resolution FTIR study of 34S16O2: Re-analysis of the bands ν1 + ν2, ν2 + ν3, and first analysis of the hot band 2ν2 + ν3 - ν2 // J. Mol. Spectrosc. 2016. V. 319. P. 17–25. DOI: 10.1016/j.jms.2015.11.003.
27. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Buttersack T., Sydow C., Bauerecker S. High resolution FTIR study of 34S16O2: The bands 2ν1, ν1 + ν3, ν1 + ν2 + ν3 - ν2, and ν1 + ν2 + ν3 // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 169. P. 49–57. DOI: 10.1016/j.jqsrt.2015.09.015.
28. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Krivchikova Y.V., Sklyarova E.A., Buttersack T., Sydow C., Bauerecker S. High resolution FTIR study of 34S16O2: The bands 2ν3, 2ν1 + ν2, and 2ν1 + ν2 - ν2 // J. Mol. Spectrosc. 2015. V. 318. P. 26–33. DOI: 10.1016/j.jms.2015.09.009.
29. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Fomchenko A.L., Sydow C., Bauerecker S. First high resolution analysis of the 3ν1 band of 34S16O2 // J. Mol. Spectrosc. 2016. V. 319. P. 50–54. DOI: 10.1016/j.jms.2015.11.002.
30. Blake T.A., Flaud J.-M., Lafferty W.J. First analysis of the rotationally-resolved n2 and 2ν2 - ν2 bands of sulfur dioxide, 33S16O2 // J. Mol. Spectrosc. 2017. V. 333. P. 19–22. DOI: 10.1016/j.jms.2016.12.011.
31. Flaud J.-M., Blake T.A., Lafferty W.J. First high-resolution analysis of the ν1, ν3, and ν1 + ν3 bands of sulphur dioxide 33S16O2 // J. Mol. Phys. 2017. V. 115. P. 447–453. DOI: 10.1080/00268976.2016.1269966.
32. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Zamotaeva V.A., Kuznetsov S.I., Sydow C., Maul C., Bauerecker S. First high resolution analysis of the ν1 + ν2 and ν2 + ν3 bands of S18O2 // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 179. P. 187–197. DOI: 10.1016/j.jqsrt.2016.03.038.
33. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Morzhikova Yu.B., Maul C., Sydow C., Bauerecker S. Study of highly excited ro-vibrational states of S18O2 from “hot” transitions: The bands ν1 + ν2 + ν3 - ν2, 1 + ν2 - ν2, and 2ν2 + ν3 - ν2 // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 196. P. 159–164. DOI: 10.1016/j.jqsrt.2017.04.004
34. Gueye F., Manceron L., Perrin A., Kwabia-Tchana F., Demaison J. First far-infrared high-resolution analysis of the ν2 band of sulphur dioxide 32S16O18O and 32S18O2 // J. Mol. Phys. 2016. V. 114. P. 2769–2776. DOI: 10.1080/00268976.2016.1154619.
35. Ulenikov O.N., Bekhtereva E.S., Krivchikova Yu.V., Morzhikova Yu.B., Buttersack T., Sydow C., Bauerecker S. High resolution analysis of 32S18O2 spectra: The ν1 and ν3 interacting bands // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 166. P. 13–22. DOI: 10.1016/j.jqsrt.2015.07.004.
36. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Horneman V.-M., Sydow C., Bauerecker S. High resolution FTIR spectroscopy of sulfur dioxide in the 1550–1950 cm-1 region: First analysis of the ν1 + ν22 + ν3 bands of 32S16O18O and experimental line intensities of ro-vibrational transitions in the ν1 + ν22 + ν3 bands of 32S16O2, 34S16O2, 32S18O2 and 32S16O18O // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 377–391. DOI: 10.1016/j.jqsrt.2017.02.005.
37. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Zamotaeva V.A., Sklyarova E.A., Sydow C., Maul C., Bauerecker S. First high resolution analysis of the 2ν1, 2ν3, and ν1 + ν3 bands of S18O2 // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 185. P. 12–21. DOI: 10.1016/j.jqsrt.2016.08.008.
38. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Ziat­kova A.G., Sklyarova E.A., Kuznetsov S.I., Sydow C., Bauerecker S. First rotational analysis of the (111) and (021) vibrational state of S16O18O from the “hot” ν1 + ν2 + ν3 - ν2 and 2ν2 + ν3 + ν2 bands // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 202. P. 98–103. DOI: 10.1016/j.jqsrt.2017.07.029.
39. Ulenikov O.N., Bekhtereva E.S., Gromova O.V., Zamotaeva V.A., Kuznetsov S.I., Sydow C., Bauerecker S. High resolution study of the rotational structure of doubly excited vibrational states of 32S16O18O: The first analysis of the 2ν1, ν1 + ν3, and 2ν3 bands // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 189. P. 344–350. DOI: 10.1016/j.jqsrt.2016.12.019.
40. Ulenikov O.N., Bekhtereva E.S., Krivchikova Yu.V., Zamotaeva V.A., Buttersack T., Sydow C., Bauerecker S. Study of the high resolution spectrum of 32S16O18O: The ν1 and ν3 bands // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 168. P. 29–39. DOI: 10.1016/j.jqsrt.2015.08.010.