Vol. 37, issue 07, article # 2

Sinitsa L. N., Serdyukov V. I., Nevzorova T.A., Dudaryonok A. S., Lavrentieva N. N. Measurements and calculations of the coefficients of N2O line broadening and shift by air pressure in the (0002) ← (0000) band. // Optika Atmosfery i Okeana. 2024. V. 37. No. 07. P. 546–553. DOI: 10.15372/AOO20240702 [in Russian].
Copy the reference to clipboard

Abstract:

Accurate measurements of the concentration of nitrous oxide, a potent greenhouse gas, in the Earth's atmosphere are important for modeling the radiation balance of our planet. The work presents the measured broadening and shift coefficients of N2O lines by air pressure at room temperature for 82 rovibrational transitions in the (0002) ← (0000) band; the rotational quantum number m varies from 3 to 54. The measurements were carried out on an IFS-125M Fourier transform spectrometer with a spectral resolution of 0.0056 cm-1. The calculated line-broadening and shift coefficients were obtained using a semi-classical method modified by introducing a correction factor in the calculation scheme. Our parameters are compared with those presented in the literature and in modern spectroscopic databases. A vibrational dependence of the line half-widths for the n3 stretching vibration was revealed.

Keywords:

line profile parameter, line broadening, halfwidth, line shift, nitrous oxide

Figures:

References:

1. Arshinov M.Yu., Belan B.D., Davydov D.C., Kozlov A.V., Fofonov A.V. Potoki parnikovykh gazov na granitse «pochva–atmosfera» v fonovom raione goroda Tomska // Optika atmosf. i okeana. 2022. V. 35, N 12. P. 1021–1031. DOI: 10.15372/AOO20221209; Arshinov M.Yu., Belan B.D., Davydov D.C., Kozlov A.V., Fofonov A.V. Soil–atmosphere greenhouse gas fluxes in a background area in the Tomsk Region (Western Siberia) // Atmos. Ocean. Opt. 2023. V. 36, N 2. P. 152–161.
2. Virt D.A. Parizhskoe Soglashenie: novyj komponent klimaticheskogo rezhima OOH (The Paris Agreement as a New Component of the UN Climate Regime) // Vestnik mezhdunarodnyx organizatsij. 2017. V. 12, N 4. P. 185–214.
3. Kondrat'ev K.Ya., Isidorov V.A. Okisly azota kak khimicheski i opticheski aktivnye malye gazovye komponenty troposfery // Optika atmosf. i okeana. 2001. V. 14, N 8. P. 643–652.
4. Belan B.D. Troposfernyi ozon. 6. Komponenty ozonovykh tsiklov // Optika atmosf. i okeana. 2009. V. 22, N 4. P. 358–379.
5. Toth R.A. N2- and air-broadened linewidths and frequency-shifts of N2O // J. Quant. Spectrosc. Radiat. Transfer. 2000. V. 66. P. 285–304. DOI: 10.1016/S0022-4073(99)00167-3.
6. Loos J., Birk M., Wagner G. Pressure broadening, -shift, speed dependence and line mixing in the n3 ro-vibrational band of N2O // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 151. P. 300–309. DOI: 10.1016/j.jqsrt.2014.10.008.
7. Nemtchinov V., Sun C., Varanasi P. Measurements of line intensities and line widths in the 3-fundamental band of nitrous oxide at atmospheric temperatures // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 84. P. 267–284. DOI: 10.1016/S0022-4073(02)00355-2.
8. Nakayama T., Fukuda H., Sugita A., Hashimoto S., Kawasaki M., Aloisio S., Morino I., Inoue G. Buffer-gas pressure broadening for the (0003) ← (0000) band of N2O measured with continuous-wave cavity ring-down spectroscopy // Chem. Phys. 2007. V. 334. P. 196–203. DOI: 10.1016/j.chemphys.2007.03.001.
9. Adkins E.M., Long D.A., Fleisher A.J., Hodges J.T. Near-infrared cavity ring-down spectroscopy measurements of nitrous oxide in the (4200) ← (0000) and (5000) ← (0000) bands // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 262. P. 107527. DOI: 10.1016/j.jqsrt.2021.107527.
10. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canèw E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Auwera J.V., Vasilenko I.A., Vigasin A.A., Villanu­eva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer 2022. V. 277, N 1. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
11. Kruglova T.V., Shcherbakov A.P. Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines // Opt. Spectrosc. 2011. V. 111. P. 353–356. DOI: 10.1134/S0030400X1109013X.
12. Mogi K., Komine T., Hirao K. A theoretical study on the dipole moment of N2O and the weakly bound complexes formed by N2O // J. Chem. Phys. 1991. V. 95. P. 8999. DOI: 10.1063/1.461231.
13. Chetty N., Couling V.W. Measurement of the electric quadrupole moment of N2O // J. Chem. Phys. 2011. V. 134, N 144307. DOI: 10.1063/1.3578609.
14. Halkier A., Coriani S., Jørgensen P. The molecular electric quadrupole moment of N2 // Chem. Phys. Lett. 1998. V. 294. P. 292–296. DOI: 10.1016/S0009-2614(98)00878-1.
15. Buckingham A.D., Disch R.L., Dunmur D.A. Quadrupole moments of some simple molecules // J. Am. Chem. Soc. 1968. V. 90. P. 3104–3107. DOI: 10.1021/ja01014a023.
16. Bykov A.D., Lavrentieva N.N., Sinitsa L.N. Semi-empiric approach of the calculation of H2O and CO2 line broadening and shifting // Mol. Phys. 2004. V. 102, N 14–15. P. 1653–1658. DOI: 10.1080/00268970410001725765.
17. Anderson P.W. Pressure broadening in the microwave and infrared regions // Phys. Rev. 1949. V. 76. P. 647–661. DOI: 10.1103/PhysRev.76.647.
18. Tsao C.J., Curnutte B. Line-width of pressure-broadened spectral lines // J. Quant. Spectrosc. Radiat. Transfer. 1961. V. 2. P. 41–91. DOI: 10.1016/0022-4073(62)90013-4.
19. Olney T.N., Cann N.M., Cooper G., Brion C.E. Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules // Chem. Phys. 1997. V. 223. P. 59–98. DOI: 10.1016/S0301-0104(97)00145-6.
20. Zavilopulo A.N., Chipev F.F., Shpenik O.B. Ionizatsiya molekul azota, kisloroda, vody i dvuokisi ugleroda elektronnym udarom vblizi poroga // ZHurn. tekhn. fiz. 2005. V. 75, N 4. P. 19–24.
21. May E.F., Moldover M.R., Schmidt J.W. Electric and magnetic susceptibilities of gaseous oxygen: Present data and modern theory compared // Phys. Rev. A. 2008. V. 78, N 032522. P. 1–15. DOI: 10.1103/PhysRevA.78.032522.
22. Hashemi R., Gordon I.E., Adkins E.M., Hodges J.T., Long D.A., Birk M., Loos J., Boone C.D., Fleisher A.J., Predoi-Cross A., Rothman L.S. Improvement of the spectroscopic parameters of the air- and self-broadened N2O and CO lines for the HITRAN2020 database applications // J. Quant. Spectrosc. Radiat. Transfer. 2021. P. 107735. DOI: 10.1016/j.jqsrt.2021.107735.
23. Hartmann J.M. A simple empirical model for the collisional spectral shift of air-broadened CO2 lines // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, N 18. P. 2019–2026. DOI: 10.1016/j.jqsrt.2009.05.016.