Vol. 37, issue 07, article # 12

Maslennikova E. A., Zuev V. V., Saveljeva E. S., Pavlinskii A. V. Activity of high cyclones above Erebus volcano according to ERA5 reanalysis data. // Optika Atmosfery i Okeana. 2024. V. 37. No. 07. P. 620–623. DOI: 10.15372/AOO20240712 [in Russian].
Copy the reference to clipboard

Abstract:

Erebus volcano is the southernmost active volcano on Earth, whose volcanogenic emissions include components that play a significant role in catalytic cycles of stratospheric ozone depletion. High cyclones contribute to the rise of gas emissions from Erebus volcano (including HCl and SO2) from the troposphere to the altitudinal range of ozone hole formation, from 14 to 22 km in the stratosphere. The paper considers the integral content of HCl and ClONO2 for the period 1992–2023 and analyzes the variability of the frequency of high cyclone occurrence for the period 1980–2022 based on the ERA5 reanalysis data. It is revealed that the maximal frequency of occurrence of high cyclones over Erebus volcano is usually observed in July. The analysis of the integrated HCl content at different stations showed that the values over the Antarctic are much higher than over the Arctic and approximately twice as high as at midlatitude stations. The effect of HCl accumulation in the stratosphere is shown: the correlation coefficient between 5-year average frequencies of occurrence of high cyclones and 5-year average values of ozone hole area with a 4-year shift of the series of the ozone hole area ahead relative to the series of the frequency of occurrence of high cyclones, calculated for the period from 1980 to 2022, amounts 0.78.

Keywords:

high cyclones, Antarctic ozone hole, Erebus volcano, Antarctic polar vortex

Figures:

References:

1. Dobson G.M.B. Exploring the Atmosphere. Oxford: Clarendon Press, 1963. 209 p.
2. Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone // Nature. 1986. V. 321, N 6072. P. 755–758. DOI: 10.1038/321755a0.
3. Boichu M., Oppenheimer C., Tsanev V., Kyle P.R. High temporal resolution SO2 flux measurements at Erebus volcano, Antarctica // J. Volcanol. Geoth. Res. 2010. V. 190, N 3–4. P. 325–336. DOI: 10.1016/j.jvolgeores.2009.11.020.
4. Boichu M., Oppenheimer C., Roberts T.J., Tsanev V., Kyle P.R. On bromine, nitrogen oxides, and ozone depletion in the tropospheric plume of Erebus volcano (Antarctica) // Atmos. Environ. 2011. V. 45, N 23. P. 3856–3866. DOI: 10.1016/j.atmosenv.2011.03.027.
5. Dibble R.R., Kyle P.R., Rowe C.A. Video and seismic observations of Strombolian eruptions at Erebus volcano, Antarctica // J. Volcanol. Geoth. Res. 2008. V. 177, N 3. P. 619–634. DOI: 10.1016/j.jvolgeores.2008.07.020.
6. Aster R., Mah S., Kyle P., McIntosh W., Dunbar N., Johnson J., Ruiz M., McNamara S. Very long period oscillations of Mount Erebus volcano // J. Geophys. Res. 2003. V. 108, N B11. P. 2522–2544. DOI: 10.1029/2002JB002101.
7. Oppenheimer С., Moretti R., Kyle P.R., Eschenba­cher A., Lowenstern J.B., Hervig R.L., Dunbar N.W. Mantle to surface degassing of alkalic magmas at Erebus volcano // Earth Planet. Sci. Lett. 2011. V. 306, N 3–4. P. 261–271. DOI: 10.1016/j.epsl.2011.04.005.
8. Jones K.R., Johnson J.B., Aster R., Kyle P.R., McIntosh W.C. Infrasonic tracking of large bubble bursts and ash venting at Erebus Volcano, Antarctica // J. Volcanol. Geoth. Res. 2008. V. 177, N 3. P. 661–672. DOI: 10.1016/j.jvolgeores.2008.02.001.
9. Zuev V.V., Zueva N.E., Savelieva E.S., Gerasimov V.V. The Antarctic ozone depletion caused by Erebus volcano gas emissions // Atmos. Environ. 2015. V. 122. P. 393–399. DOI: 10.1016/j.atmosenv.2015.10.005.
10. Krämer M., Müller R., Bovensmann H., Burrows J., Brinkmann J., Röth E.P., Grooß J.U., Woyke T., Ruhnke R., Günther G., Hendricks J., Lippert E., Carslaw K.S., Peter T., Zieger A., Brühl C., Steil B., Lehmann R., McKenna D.S. Intercomparison of stratospheric chemistry models under polar vortex conditions // J. Atmos. Chem. 2003. V. 45, N 1. P. 51–77. DOI: 10.1023/A:1024056026432.
11. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.N. The ERA5 global reanalysis // Q. J. Roy. Meteorol. Soc. 2020. V. 146, N 730. P. 1999–2049. DOI: 10.1002/qj.3803.
12. Zuev V.V., Savelieva E.S., Pavlinsky A.V., Sidorovski E.A. The unprecedented duration of the 2020 ozone depletion in the Antarctic // Dokl. Earth Sci. 2023. V. 509, N 1. P. 166–170. DOI: 10.1134/S1028334X22601754.