Vol. 37, issue 06, article # 9

Lutskin Е. S., Shikhovtsev M. Yu., Molozhnikova E. V., Obolkin V. A., Berdashkinova O. I., Khodzher T. V. Mercury in atmospheric air and precipitation at the monitoring station Listvyanka (Southern Baikal region) in 2022–2023. // Optika Atmosfery i Okeana. 2024. V. 37. No. 06. P. 502–511. DOI: 10.15372/AOO20240609 [in Russian].
Copy the reference to clipboard

Abstract:

Gaseous elemental mercury (GEM) is the predominant form of mercury in the atmosphere. As a result of deposition, it enters terrestrial and aquatic ecosystems, where it is further transformed into the ecotoxicant methylmercury. The work is devoted to the study of gaseous elemental mercury (GEM) in atmospheric air and total mercury in atmospheric precipitation in the Southern Baikal region. Sampling was carried out at the monitoring station Listvyanka (51.9° N, 104.4° E) in 2022–2023. Mercury concentration in air was measured by mercury gas analyzer RA-915AM (St. Petersburg, Russia). The concentration of total mercury in precipitation was determined by PND F 14.1:2:4.271-2012, method A (permanganate mineralization). Statistical analysis of data on mercury content in atmospheric air and precipitation is performed. During the period under study, the concentration of GEM in atmospheric air averaged 1.61 ng/m3. The analysis showed that the pair correlation coefficient throughout the period under study was 0.47 between Hg0 and sulfur dioxide (SO2) and 0.44 between Hg0 and nitrogen dioxide (NO2). In 12 cases, a strong positive correlation (> 0.9) between Hg0, SO2, and NO2 was observed. For each episode of mercury concentration above 2.0 ng/m3, back trajectories of air masses were calculated using the HYSPLIT model. The trajectory analysis also confirmed our assumption of a common type of source for mercury and minor gas impurities. The weighted average content of total mercury in precipitation is 44 ng/L, the median value is 29 ng/L, and the maximum is 282 ng/L. We have supplemented the existing ideas about mercury content in the atmosphere of the Southern Baikal region. It was found that despite the significant distance from large cities, the mercury content in atmospheric precipitation on the shores of Lake Baikal is comparable to the results obtained in urban agglomerations of Nepal, Canada, Korea, and China.

Keywords:

gaseous elemental mercury, total mercury, precipitation, atmospheric air, HYSPLIT, Southern Baikal Region

Figures:

References:

1. Yu B., Yang L., Liu H., Xiao C., Bu D., Zhang Q., Fu J., Zhang Q., Cong Z., Liang Y., Hu L., Yin Y., Shi J., Jiang G. Tracing the transboundary transport of mercury to the Tibetan Plateau using atmospheric mercury isotopes // Environ. Sci. Technol. 2022. V. 56, N 3. P. 1568–1577. DOI: 10.1021/acs.est.1c05816.
2. Emep. Heavy Metals: Analysis of long-term trends, country-specific research and progress in mercury regional and global modelling / Meteorological Synthesizing Centre – East; Chemical Co-Ordinating Centre. Report 2. 2015. URL: http://www.msceast.org/index. php/reports.
3. Qin X., Dong X., Tao Z., Wei R., Zhang H., Guo Q. Tracing the transboundary transport of atmospheric Particulate Bound Mercury driven by the East Asian monsoon // J. Hazard. Mater. 2023. V. 446. P. 130678. DOI: 10.1016/j.jhazmat.2022.130678.
4. Langford N.J., Ferner R.E. Toxicity of mercury // J. Hum. Hypertens. 1999. V. 13, N 10. P. 651–656. DOI: 10.1038/sj.jhh.1000896.
5. Pavithra K.G., SundarRajan P., Kumar P.S., Rangasamy G. Mercury sources, contaminations, mercury cycle, detection and treatment techniques: A review // Chemosphere. 2023. V. 312. P. 137314. DOI: 10.1016/j.chemosphere.2022.137314.
6. Brooks S., Arimoto R., Lindberg S., Southworth G. Antarctic polar plateau snow surface conversion of deposited oxidized mercury to gaseous elemental mercury with fractional long-term burial // Atmos. Environ. 2008. V. 42, N 12. P. 2877–2884. DOI: 10.1016/j.chemosphere.2022.137314.
7. Lindqvist O., Rodhe H. Atmospheric mercury – a review // Tellus B. 1985. V. 37, N 3. P. 136–159. DOI: 10.1016/j.atmosenv.2007.05.029.
8. Ye Z., Mao H., Lin C.J., Kim S.Y. Investigation of processes controlling summertime gaseous elemental mercury oxidation at midlatitudinal marine, coastal, and inland sites // Atmos. Chem. Phys. 2016. V. 16, N 13. P. 8461–8478. DOI: 10.5194/acp-16-8461-2016.
9. Horowitz H.M., Jacob D.J., Zhang Y., Dibble T.S., Slemr F., Amos H.M., Schmidt J.A., Corbitt E.Y., Marais E.A., Sunderland E.M. A new mechanism for atmospheric mercury redox chemistry: Implications for the global mercury budget // Atmos. Chem. Phys. 2017. V. 17, N 10. P. 6353–6371. DOI: 10.5194/acp-17-6353-2017.
10. Zhang Y.X., Jacob D.J., Horowitz H.M., Chen L., Amos H.M., Krabbenhoft D.P., Slemr F., St Louis V.L., Sunderland E.M. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions // Proc. Nat. Acad. Sci. 2016. V. 113, N 3. P. 526–531. DOI: 10.1073/pnas.151631211.
11. Lamborg C., Fitzgerald W., O’Donnell J., Torgersen T. A non-steady state box model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients // Abstr. Papers Am. Chem. Soc. 2002. V. 223. P. U520–U520.
12. Sprovieri F., Pirrone N., Bencardino M., D’amore F., Carbone F., Cinnirella S., Mannarino V., Landis M., Ebinghaus R., Weigelt A., Brunke E.-G., Labuschagce C., Martin L., Munthe J., Wangberg I., Artaxo P., Morais F., Barbosa H.M.J., Brito J., Warren C., Barbante C., Dieguez M.C., Garcia P.E., Dommergue A., Angot H., Magand O., Skov H., Horvat M., Kotnik J., Read K.A., Neves L.M., Gawlik B.M., Sena F., Mashyanov N., Obolkin V., Wip D., Feng X.B., Zhang H., Fu X., Ramachandran R., Cossa D., Knoery J., Marusczak N., Nerentorp M., Norstrom C. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network // Atmos. Chem. Phys. 2016. V. 16, N 18. P. 11915–11935. DOI: 10.5194/acp-16-11915-2016.
13. Gustin M.S., Lindberg S.E., Weisberg P.J. An update on the natural sources and sinks of atmospheric mercury // Appl. Geochem. 2008. V. 23, N 3. P. 482–493. DOI: 10.1016/j.apgeochem.2007.12.010.
14. Pirrone N., Cinnirella S., Feng X., Finkelman R.B., Friedli H.R., Leaner J., Mason R., Mukherjee A.B., Stracher G.B., Streets D.G., Telmer K. Global mercury emissions to the atmosphere from anthropogenic and natural sources // Atmos. Chem. Phys. 2009. V. 9, N 21. P. 8317–8330. DOI: 10.5194/acp-10-5951-2010.
15. Wang F., Wang S., Zhang L., Yang H., Gao W., Wu Q., Hao J. Mercury mass flow in iron and steel production process and its implications for mercury emission control // J. Environ. Sci. 2016. V. 43. P. 293–301. DOI: 10.1016/j.jes.2015.07.019.
16. Wu Q., Li G., Wang S., Liu K., Hao J. Mitigation options of atmospheric Hg emissions in China // Environ. Sci. Technol. 2018. V. 52, N 21. P. 12368–12375. DOI: 10.1021/acs.est.8b03702.
17. Charvat P., Klimes L., Pospísil J., Klemes J.J., Varbanov P.S. An overview of mercury emissions in the energy industry – a step to mercury footprint assessment // J. Cleaner Prod. 2020. V. 267. P. 122087. DOI: 10.1016/j.jclepro.2020.122087.
18. Beckers F., Rinklebe J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review // Crit. Rev. Environ. Sci. Technol. 2017. V. 47, N 9. P. 693–794. DOI: 10.1080/10643389.2017.1326277.
19. Koval' P.V., Udodov Yu.N., Andrulaitis L.D., Gapon A.E., Sklyarova O.A., Chernigova S.E. Gidrokhimicheskie kharakteristiki poverkhnostnogo stoka ozera Baikal (1997–2003 years) // Dokl. RAN. 2005. V. 401, N 5. P. 663–667.
20. Maisyuk E.P. Rol' energetiki v ekologicheskom sostoyanii Baikal'skoi prirodnoi territorii // Geografiya i prirodnye resursy. 2017. N 1. P. 100–107. DOI: 10.21782/GIPR0206-1619-2017-1(100-107).
21. Koroleva G.P., Holodova M.S. Otsenka ekologicheskogo sostoyaniya gorodov Priangar'ya po atmosfernym osadkam v zimnii i letnii periody // Vestn. IrGTU. 2012. V. 66, N 7. P. 60–66.
22. Grebenshchikova V.I. Geokhimicheskaya spetsifika sostava snegovoi vody nekotorykh gorodov Irkutskoi oblasti // Voda: khimiya i ekologiya. 2013. N 2. P. 19–25.
23. Lutskin E.S., Khuriganova O.I. Distribution of the total and dissolved mercury concentrations at the Irkutsk city snow sampling during winter 2021–2022 // Limnol. Freshwater Biology. 2022. V. 3, N 3. P. 1362–1364. DOI: 10.31951/2658-3518-2022-A-3-1362.
24. Poste A.E., Pastukhov M.V., Braaten H.F.V., Ozersky T., Moore M. Past and present mercury accumulation in the Lake Baikal seal: Temporal trends, effects of life history, and toxicological implications // Environ. Toxicol. Chem. 2018. V. 37, N 5. P. 1476–1486. DOI: 10.1002/etc.4095.
25. Efimova N.V., D'yakovich M.P., Bicheva G.G., Lisetskaya L.G., Koval' P.V., Andrulaitis L.D., Bezgodov I.V. Izuchenie zdorov'ya naseleniya v usloviyakh vozdeistviya tekhnogennoi rtuti // Acta Biomed. Sci. 2007. N 2. P. 75–79.
26. Leonova G.A., Andrulaitis L.D. Rtut' v ekosisteme Bratskogo vodokhranilishcha // Ekologiya promyshlennogo proizvodstva. 2006. N 1. P. 12–17.
27. Kitaev N.A., Grebenshchikova V.I., Lustenberg E.E., Lomonosov I.S., Koval' P.V. Rtut' v okruzhayushchei srede YUzhnogo Pribaikal'ya // Geoekologiya. Inzhenernaya geologiya, gidrogeologiya, geokriologiya. 2008. N 6. P. 517–530.
28. Mashyanov N.R., Obolkin V.A., Pogarev S.E., Ryzhov V.V., Sholupov S.E., Potemkin V.L., Molozhnikova E.V., Khodzher T.V. Air mercury monitoring at the Baikal area // Atmosphere. 2021. V. 12, N 7. P. 807. DOI: 10.3390/atmos12070807.
29. Mashyanov N.R., Pogarev S.E., Sholupov S.E., Ryzhov V.V., Obolkin V.A., Khodzher T.V., Potemkin V.L., Molozhnikova E.V., Kalinchuk V.V. Air mercury monitoring in the Baikal area (2011–2021) // Limnol. Freshwater Biology. 2022. V. 3, N 3.  P. 1315–1318. DOI: 10.31951/2658-3518-2022-A-3-1315.
30. Obolkin V., Molozhnikova E., Shikhovtsev M., Netsvetaeva O., Khodzher T. Sulfur and nitrogen oxides in the atmosphere of Lake Baikal: Sources, automatic monitoring, and environmental risks // Atmosphere. 2021. V. 12, N 10. P. 1–10. DOI: 10.3390/atmos12101348.
31. Shikhovtsev A.Y., Kovadlo P.G., Lezhenin A.A., Gradov V.S., Zaiko P.O., Khitrykau M.A., Kirichenko K.E., Driga M.B., Kiselev A.V., Russkikh I.V., Obolkin V.A., Shikhovtsev M.Yu. Simulating atmospheric characteristics and daytime astronomical seeing using weather research and forecasting model // Appl. Sci. 2023. V. 13, N 10. P. 1–19. DOI: 10.3390/app13106354.
32. PND Ф 14.1:2:4.271-2012 (M 01-51-2012). Kolichestvennyi khimicheskii analiz vod. Metodika izmerenii massovoi kontsentratsii rtuti v probakh prirodnykh, pit'evykh, mineral'nykh, stochnykh vod atomno-absorbtsionnym metodom s zeemanovskoi korrektsiei neselektivnogo pogloshcheniya na analizatore rtuti RA915M. M., 2012. P. 1–19.
33. Kovadlo P.G., Shikhovtsev A.Yu., Kopylov E.A., Kiselev A.V., Russkikh I.V. Issledovanie opticheskikh atmosfernykh iskazhenii po dannym izmerenii datchika volnovogo fronta // Izv. vuzov. Fizika. 2020. V. 63, N 11. P. 109–114. DOI: 10.17223/00213411/63/11/109.
34. Shikhovtsev A.Yu. Metod opredeleniya kharakteristik opticheskoi turbulentnosti po luchu zreniya astronomicheskogo teleskopa // Optika atmosf. i okeana. 2022. V. 35, N 1. P. 74–80. DOI: 10.15372/AOO20220111; Shikhovtsev A.Yu. A method of determining optical turbulence characteristics by the line of sight of an astronomical telescope // Atmos. Ocean. Opt. 2022. V. 35, N 3. P. 303–309.
35. Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J., Cohen M.D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system // Bull. Am. Meteorol. Soc. 2015. V. 96, N 12. P. 2059–2077. DOI: 10.1175/BAMS-D-14-00110.1.
36. Balin Yu.S., Ershov A.D., Penner I.E. Lidarnye korabel'nye issledovaniya aerozol'nykh polei v atmosfere oz. Baikal // Optika atmosf. i okeana. 2003. V. 16, N 5. P. 438–446.
37. Nasonov S., Balin Y., Klemasheva M., Kokhanenko G., Novoselov M., Penner I. Peculiarities of the Vertical Vertical structure of atmospheric aerosol fields in the basin of Lake Baikal according to lidar observations // Atmosphere. 2023. V. 14, N 5. P. 837. DOI: 10.3390/atmos14050837.
38. Nasonov S., Balin Y., Klemasheva M., Kokhanenko G., Novoselov M., Penner I. Study of atmospheric aerosol in the Baikal mountain basin with shipborne and ground-based lidars // Remote Sens. 2023. V. 15, N 15. P. 3816. DOI: 10.3390/rs15153816.
39. Shikhovtsev M.Yu., Obolkin V.A., Khodzher T.V., Molozhnikova Ye.V. Izmenchivost' prizemnoi kontsentratsii tverdykh chastits РМ1–РМ10 v vozdushnom basseine yuzhnogo Pribaikal'ya // Optika atmosf. i okeana. 2023. V. 36, N 6. P. 448–455. DOI: 10.15372/AOO20230604; Shikhovtsev M.Yu., Obolkin V.A., Khodzher T.V., Molozhnikova Ye.V. Variability of the ground concentration of particulate matter PM1–PM10 in the air basin of the Southern Baikal Region // Atmos. Ocean. Opt. 2023. V. 36, N 6. P. 655–662.
40. Eyrikh S., Shol L., Shinkaruk E. Assessment of mercury concentrations and fluxes deposited from the atmosphere on the territory of the Yamal-Nenets autonomous area // Atmosphere. 2022. V. 13, N 1. P. 37. DOI: 10.3390/atmos13010037.
41. Shol' L.V., Eirikh S.S., Il'ina E.G. Otsenka kontsentratsii i potokov rtuti, postupayushchikh iz atmosfery na territoriyu YAmalo-Nenetskogo avtonomnogo okruga // Izv. Altaiskogo otdeleniya Russkogo geograficheskogo obshchestva. 2020. V. 59, N 4. P. 83–94. DOI: 10.24411/2410-1192-2020-15909
42. Shol' L.V., Eirikh S.S., Il'ina E.G. Rtut' v atmosfernykh osadkakh g. Barnaula: sezonnaya i mezhgodovaya variabel'nost' kontsentratsii i potokov // Trudy molodykh uchenykh Altaiskogo gosudarstvennogo universiteta. 2020. N 17. P. 237–240.