Vol. 37, issue 06, article # 8
Copy the reference to clipboard
Abstract:
The measurement complex including diffusion aerosol spectrometer, optical aerosol spectrometer, and aerosol mass concentration meter has been developed and manufactured at the Institute of Chemical Kinetics and Combustion SB RAS. Laboratory tests of the instruments included in the measurement complex were carried out using standard test systems. Comparison of measured particle size values with the data obtained by independent methods (transmission electron microscopy and measurement of particle sedimentation velocity) revealed their good agreement. It is demonstrated that the measuring complex is suitable for determining concentrations and sizes of aerosol particles within wide ranges with the real-time presentation of results both in laboratory and in situ experiments.
Keywords:
aerosol, particle concentration, aerosol optical spectrometer, aerosol diffusion spectrometer, mean particle size
References:
1. Safatov A.S., Agafonov A.P., Arshinov M.Yu., Baklanov A.M., Belan B.D., Buryak G.A., Fofonov A.V., Generalov V.M., Kozlov A.S., Lapteva N.A., Malyshkin S.B., Marchenko Yu.V., Olkin S.E., Reznikova I.K., Sergeev A.N., Simonenkov D.V., Ternovoi V.A., Tumanov Yu.V., Shmargunov V.P. Комплексная оценка атмосферного воздуха в г. Геленджике // Optika atmosf. i okeana. 2018. V. 31, N 5. P. 403–416; Safatov A.S., Agafonov A.P., Arshinov M.Yu., Baklanov A.M., Belan B.D., Buryak G.A., Fofonov A.V., Generalov V.M., Kozlov A.S., Lapteva N.A., Malyshkin S.B., Marchenko Yu.V., Olkin S.E., Reznikova I.K., Sergeev A.N., Simonenkov D.V., Ternovoi V.A., Tumanov Yu.V., Shmargunov V.P. Complex assessment of atmospheric air quality in the city of Gelendzhik // Atmos. Ocean. Opt. 2018. V. 31, N 5. P. 519–531. DOI: 10.1134/S1024856018050159.
2. Inozemtsev A.A., Sazhenkov A.N., Sipatov A.M., Tsatiashvili V.V., Abramchuk T.V., Petrov A.K., Malyshkin S.B., Kuibida L.V., Kozlov A.S., Panchenko M.V., Kozlov V.S. Izmerenie fraktsionnogo i khimicheskogo sostava neletuchikh chastits v produktakh emissii kamery sgoraniya aviatsionnogo gazoturbinnogo dvigatelya // Optika atmosf. i okeana. 2016. V. 29, N 6. P. 503–507. DOI: 10.15372/AOO20160609.
3. Yong Zha, Jay Gao, Jianjun Jiang, Heng Lyu, Jiazhu Huang. Monitoring of urban air pollution from MODIS aerosol data: Effect of meteorological parameters // Tellus B. 2010. V. 62, N 2. P. 109–116. DOI: 10.1111/j.1600-0889.2010.00451.x.
4. Onischuk A., Dubtsov S., Baklanov A., Valiulin S., Koshlyakov P., Paleev D., Mitrochenko V., Zamashchikov V., Korzhavin A. Organic nanoaerosol in coal mines: Formation mechanism and explosibility // Aerosol Air Qual. Res. 2017. V. 17, N 7. P. 1735–1745. DOI: 10.4209/aaqr.2016.12.0533.
5. Valiulin S.V., Onischuk A.A., Baklanov A.M., An’kov S.V., Dubtsov S.N., Alekseev A.A., Shkil N.N., Nefedova E.V., Plokhotnichenko M.E., Tolstikova T.G., Dolgov A.M., Dultseva G.G. Aerosol inhalation delivery of ceftriaxone in mice: Generation procedure, pharmacokinetics, and therapeutic outcome // Antibiotics. 2022. V. 11, N 10. P. Art. 1310. DOI: 10.1016/j.ijpharm.2021.121013.
6. Bazhina A.A., Valiulin S.V., Baklanov A.M., Dubtsov S.N., An’kov S.V., Plokhotnichenko M.E., Tolstikova T.G., Onischuk A.A. Метод генерации аэрозоля антибактериального лекарственного вещества цефазолина // Optika atmosf. i okeana. 2020. V. 33, N 6. P. 459–462; Bazhina A.A., Valiulin S.V., Baklanov A.M., Dubtsov S.N., An’kov S.V., Plokhotnichenko M.E., Tolstikova T.G., Onischuk A.A. A method for generating an aerosol of the antibacterial medicine cefazolin // Atmos. Ocean. Opt. 2020. V. 33, N 5. P. 555–558.
7. Valiulin S.V., Onischuk A.A., Pyryaeva A.P., An’kov S.V., Baklanov A.M., Shkil N.N., Nefedova E.V., Ershov K.S., Tolstikova T.G., Dultseva G.G. Aerosol inhalation delivery of Ag nanoparticles in mice: Pharmacokinetics and antibacterial action // Antibiotics (Basel). 2023. V. 12, N 10. DOI: 10.3390/antibiotics12101534.
8. Vons V., Yurteri C.U., Schmidt-Ott A. Generation and sizing of particles for aerosol-based nanotechnology // KONA Pow. Part. J. 2008. N 26. P. 13–35. DOI: 10.14356/kona.26.2008006.
9. Virgil A. Marple. History of impactors – the first 110 years // Aerosol Sci. Technol. 2004. V. 38, N 3. P. 247–292. DOI: 10.1080/02786820490424347.
10. Valiulin S.V., Dubtsov S.N. Diffuzionnyi spektrometr aerozolya: osobennosti i primenenie // Priroda. 2016. N 11. P. 90–91.
11. Heim M., Mullins B.J., Umhauer H., Kasper G. Performance evaluation of three optical particle counters with an efficient “multimodal” calibration method // J. Aerosol Sci. 2008. V. 39. P. 1019–1031. DOI: 10.1016/j.jaerosci.2008.07.006.
12. Huanling Hu, Xuebin Li, Yinchao Zhang, Tao Li. Determination of the refractive index and size distribution of aerosol from dual-scattering-angle optical particle counter measurements // Appl. Opt. 2006. V. 45, N 16. P. 3864–3870. DOI:10.1364/AO.45.003864.
13. Renard J.-B., Dulac F., Berthet G., Lurton T., Vignelles D., Jégou F., Tonnelier T., Jeannot M., Couté B., Akiki R., Verdier N., Mallet M., Gensdarmes F., Charpentier P., Mesmin S., Duverger V., Dupont J.-C., Elias T., Crenn V., Sciare J., Zieger P., Salter M., Roberts T., Giacomoni J., Gobbi M., Hamonou E., Olafson H., Dagsson-Waldhauserova P., Camy-Peyret C., Mazel C., Décamps T., Piringer M., Surcin J., Daugeron D. LOAC: A small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 1: Principle of measurements and instrument evaluation // Atmos. Meas. Tech. 2016. V. 9. P. 1721–1742. DOI: 10.5194/amt-9-1721-2016.
14. Knutson E.O., Whitby K.T. Aerosol classification by electric mobility: Apparatus, theory, and applications // J. Aerosol Sci. 1975. V. 6. P. 443–451. DOI: 10.1016/0021-8502(75)90060-9.
15. Intra P., Tippayawong N. An overview of differential mobility analyzers for size classification of nano-meter-sized aerosol particles // Songklanakarin J. Sci. Technol. 2008. V. 30, N 2. P. 243–256.
16. Ankilov A., Baklanov A., Colhoun M., Enderle K.-H., Gras J., Julanov Yu., Kaller D., Lindner A., Lushnikov A., Mavliev R., McGovern F., O’Connor T.C., Podzimek J., Preining O., Reischl G.P., Rudolf R., Sem G.J., Szymanski W.W., Vrtala A.E., Wagner P.E., Winklmayr W., Zagaynov V. Particle size dependent response of aerosol counters // Atmos. Res. 2002. V. 62, N 3–4. P. 209–237. DOI: 10.1016/S0169-8095(02)00011-X.
17. Ankilov A.N., Baklanov A.M., Vlasenko A.L., Kozlov A.S., Malyshkin S.B. Opredelenie kontsentratsii aerozoleobrazuyushchikh veshchestv v atmosfere // Optika atmosf. i okeana. 2000. V. 13, N 6–7. P. 644–648.
18. Valiulin S.V., Baklanov A.M., Dubtsov S.N., Mitrochenko V.G., Moiseenko P.P., Onishchuk A.A. Diffuzionnyi spektrometr aerozolya dlya izmereniya raspredeleniya po razmeram i kontsentratsii nano- i submikronnykh chastits // Pribory i tekhnika eksperimenta. 2019. N 1. P. 145–146. DOI: 10.1134/S0032816219010269.
19. Onischuk A.A., Valiulin S.V., Baklanov A.M., Moiseenko P.P., Mitrochenko V.G. Determination of the aerosol particle size distribution by means of the diffusion battery: Analytical inversion // Aerosol Sci. Technol. 2018. V. 52, N 8. P. 841–853. DOI: 10.1080/02786826.2018.1473839.
20. Onischuk A.A., Baklanov A.M., Valiulin S.V., Moiseenko P.P., Mitrochenko V.G. Aerosol diffusion battery: The retrieval of particle size distribution with the help of analytical formulas // Aerosol Sci. Technol. 2018. V. 52, N 2. P. 165–181. DOI: 10.1080/02786826.2017.1387642.
21. Onischuk A.A., Valiulin S.V., Baklanov A.M., Moiseenko P.P., Mitrochenko V.G., Dultseva G.G. Aerosol diffusion battery: Analytical inversion from noisy penetration // Measurement. 2020. V. 164. P. 108049-1–10. DOI:10.1016/j.measurement.2020.108049.
22. Cheng Y.S., Yeh H.C. Theory of a screen-type diffusion battery // J. Aerosol Sci. 1980. V. 11. P. 313–320. DOI: 10.1016/0021-8502(80)90105-6.
23. Cheng Y.S., Yeh H.C., Brinsko K.J. Use of wire screens as a fan model filter // Aerosol Sci. Technol. 1985. V. 4. P. 165–174. DOI: 10.1080/02786828508959046.
24. Pollak L.W., Metnieks A.L. On the determination of the diffusion coefficient of heterogeneous aerosols by the dynamic method // Geofisica Pura e Applicata. 1957. V. 37. P. 183–190. DOI: 10.1007/BF01988861.
25. Fuchs N.A., Stechkina I.B., Starosselskii V.I. On the determination of particle size distribution in polydisperse aerosols by the diffusion method // Brit. J. Appl. Phys. 1962. V. 13. P. 280–281. DOI: 10.1088/0508-3443/13/6/307.
26. Sansone E.B., Weyel D.A. A note on the penetration of a circular tube by an aerosol with a log-normal size distribution // J. Aerosol Sci. 1971. V. 2. P. 413–415. DOI: 10.1016/0021-8502(71)90044-9.
27. Kravchenko I.I., Lekhtmakher S.O., Ruzer L.S. Calculation of particle diffusional deposition for aerosol with the lognormal size distribution in cylindrical channels // Colloid J. USSR. 1971. V. 33. P. 923–924.
28. Lee K.W., Connick P.A., Gieseke J.A. Extension of the screen type diffusion battery theory // J. Aerosol Sci. 1981. V. 12. P. 385–386. DOI: 10.1016/0021-8502(81)90027-6.
29. Mercer T.T., Greene T.D. Interpretation of diffusion battery data // J. Aerosol Sci. 1974. V. 5. P. 251–255. DOI: 10.1016/0021-8502(74)90060-3.
30. Sinclair D., Countes R.J., Liu B.Y.H., Pui D.Y.H. Automatic analysis of submicron aerosols // Aerosol Measurement. Florida: University Presses of Florida Gainesville, 1979. P. 544–563.
31. Nolan P.J., Scott J.A. Observations on the heterogeneity of condensation nuclei // Proc. Roy. Irish Acad. Sect. A: Math. Phys. Sci. 1963/1964. V. 63. P. 35–47.
32. Lushnikov A.A., Zagaynov V.A. On diffusion dynamical method of the particle size analysis // J. Aerosol Sci. 1990. V. 21. P. S163–S165. DOI: 10.1016/0021-8502(90)90213-H.
33. Sposob izmereniya spektra razmerov yader kondensatsii aerozol'nyx chastits i ustroistvo dlya ego realizatsii: Pat. 2340885. Rossiya, G 01 N 15/2. Zagainov V.A., Biryukov Yu.G., Lushnikov A.A.; FGUP Nauchno-issledovatel'skii fiziko-ximicheskii institut im. L.Ya. Karpova. N 2006137791/28; Zayavl. 26.10.06; Opubl. 10.12.08. Bul. N 34.
34. Twomey S. Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions // J. Comput. Phys. 1975. V. 18. P. 188–200. DOI: 10.1016/0021-9991(75)90028-5.
35. Reineking A., Porstendorfer J. High-volume screen diffusion batteries and a-spectroscopy for measurement of the radon daughter activity size distributions in the environment // J. Aerosol Sci. 1986. V. 17. P. 873–879. DOI: 10.1016/0021-8502(86)90040-6.
36. Ferri F., Bassini A., Paganini E. Modified version of the Chahine algorithm to invert spectral extinction data for particle sizing // Appl. Opt. 1995. V. 34. P. 5829–5839. DOI: 10.1364/AO.34.005829.
37. Bashurova V.S., Dreiling V., Hodger T.V., Jaenicke R., Koutsenogii K.P., Koutsenogii P.K., Kraemer M., Makarov V.I., Obolkin V.A., Potjomkin V.L., Pusep A.Y. Measurements of atmospheric condensation nuclei size distributions in Siberia // J. Aerosol Sci. 1992. V. 23. P. 191–199. DOI: 10.1016/0021-8502(92)90054-Y.
38. Wang Y., Yangm Ch. Regularizing active set method for retrieval of the atmospheric aerosol particle size distribution function // J. Opt. Soc. Am. A. 2008. V. 25. P. 348–356. DOI: 10.1364/josaa.25.000348.
39. Voutilainen A., Kolehmainen V., Stratmann F., Kaipio J.P. Computational methods for the estimation of the aerosol size distributions // Mathematical Modeling. Problems, Methods, Applications. New York: Springer Science + Business Media Llc, 2001. P. 219–230. DOI: 10.1007/978-1-4757-3397-6_22.
40. Fierz M., Weimer S., Burtscher H. Design and performance of an optimized electrical diffusion battery // J. Aerosol Sci. 2008. V. 40. P. 152–163. DOI: 10.1016/ j.jaerosci.2008.09.007.
41. Yee E. On the interpretation of diffusion battery data // J. Aerosol Sci. 1989. V. 20. P. 797–811. DOI: 10.1016/0021-8502(89)90091-8.
42. Eremenko S., Ankilov A. Conversion of the diffusion battery data to particle size distribution: Multiple Solutions Averaging algorithm (MSA) // J. Aerosol Sci. 1995. V. 26. P. 749–750. DOI: 10.1016/0021-8502(95)97282-J.
43. Gulak Y., Jayjock E., Muzzio F., Bauer A., McGlynn P. Inversion of Andersen cascade impactor data using the maximum entropy method // Aerosol Sci. Technol. 2010. V. 44. P. 29–37. DOI: 10.1080/02786820903338280.