Vol. 37, issue 06, article # 7

Pol'kin V. V., Panchenko M. V., Terpugova S. A., Shmargunov V. P. Study of the content of volatile species in the composition of atmospheric particles on the basis of thermal impact and recording by optical counters. // Optika Atmosfery i Okeana. 2024. V. 37. No. 06. P. 490–495. DOI: 10.15372/AOO20240607 [in Russian].
Copy the reference to clipboard


A description of the designed automated complex is presented. The results of measurements of the content of species with different volatility in six particle size ranges from 0.3 to 5 mm with artificial heating from 25 °С to 100 and 200 °С are discussed. The particle concentration was recorded by an optical counter. The instrumentation complex was tested in the period 2021–2023 in separate series of round-the-clock observations in different seasons. It has been shown that variations in the relative content of soluble sulfur compounds according to the counter data are in good agreement with the variability of the values of the parameter of condensation activity. In general, we believe that the use of this method will make it possible to obtain additional information about the seasonal and diurnal variations in aerosol composition in the intermediate range of particle sizes.


aerosol, volatile components, thermal impact, optical counter


1. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery. L.: Gidrometeoizdat, 1986. 256 p.
2. Penner J., Andreae M., Annegarn H., Barrie L., Feichter J., Hegg D., Jayaraman A., Leaitch R., Murphy D., Nganga J., Pitari G. Aerosols, their direct and indirect effects // Climate Change 2001: Working group I: The Scientific Basis / J. Houghton, Y. Ding, D. Griggs, M. Noguer, P. Linden, X. Dai, K. Maskell, C. Johnson (eds.). New York, Cambridge: Cambridge University Press, 2001. Chap. 5. P. 289–348.
3. Haywood J., Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols. A review // Rev. Geophys. 2000. V. 38. P. 513–543.
4. Takemura T., Nakajima T., Dubovik O., Holben B., Kinne S. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model // J. Clim. 2002. V. 15. P. 333–352.
5. Bellouin N., Quaas J., Gryspeerdt E., Kinne S., Stier P., Watson-Parris D., Boucher O., Carslaw K., Christensen M., Daniau A.-L., Dufresne J.-L., Feingold G., Fiedler S., Forster P., Gettelman A., Haywood J.M., Malavelle F., Lohmann U., Mauritsen T., McCoy D., Myhre G., Mülmenstädt J., Neubauer D., Possner A., Rugenstein M., Sato Y., Schulz M., Schwartz S.E., Sourdeval O., Storelvmo T., Toll V., Winker D., Stevens B. Bounding global aerosol radiative forcing of climate change // Rev. Geophys. 2020 V. 58. P. e2019RG000660. DOI: 10.1029/2019RG000660.
6. Yu H., Kaufman Y., Chin M., Feingold G., Remer L., Anderson T., Balkanski Y., Bellouin N., Boucher O., Christopher S., DeCola P., Kahn R., Koch D., Loeb N., Reddy M., Schulz M., Takemura T., Zhou M. A review of measurement-based assessments of the aerosol direct radiative effect and forcing // Atmos. Chem. Phys. 2006. V. 6. P. 613–666. DOI: 10.5194/acpd-5-7647-2005.
7. Panchenko M.V., Kozlov V.S., Pol'kin V.V., Terpugova S.A., Tumakov A.G., Shmargunov V.P. Vosstanovlenie opticheskix xarakteristik troposfernogo aerozolya Zapadnoi Sibiri na osnove obobshchennoi empiricheskoi modeli, uchityvayushchei pogloshchayushchie i gigroskopicheskie svoistva chastits // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 46–54.
8. Zenkova P.N., Terpugova S.A., Pol’kin V.V., Pol’kin Vas.V., Uzhegov V.N., Kozlov V.S., Yausheva E.P., Panchenko M.V. Razvitie empiricheskoi modeli opticheskix xarakteristik aerozolya Zapadnoi Sibiri // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 192–198. DOI: 10.15372/AOO20210305; Zenkova P.N., Terpugova S.A., Pol’kin V.V., Pol’kin Vas.V., Uzhegov V.N., Kozlov V.S., Yausheva E.P., Panchenko M.V. Development of an empirical model of optical characteristics of aerosol in Western Siberia // Atmos. Ocean. Opt. 2021. V. 34, N 4. P. 320–326. DOI: 10.1134/S1024856021040151.
9. Ivlev L.S. Chimicheskii sostav i struktura atmosfernyx aerozolei. L.: Izd-vo LGU, 1982. 368 p.
10. An W.J., Pathak R.K., Lee B.H., Pandis S.N. Aerosol volatility measurement using an improved thermodenuder: Application to secondary organic aerosol // J. Aerosol Sci. 2007. V. 38. P. 305–314. DOI: 10.1016/j.jaerosci.2006.12.002.
11. Faulhaber A.E., Thomas B.M., Jimenez J.L., Jayne J.T., Worsnop D.R., Ziemann P.J. Characterization of a thermodenuder-particle beam mass spectrometer system for the study of organic aerosol volatility and composition // Atmos. Meas. Tech. 2009. V. 2. P. 15–31. DOI: 10.5194/amt-2-15-2009.
12. Cappa C.D., Wilson K.R. Evolution of organic aerosol mass spectra upon heating: Implications for OA phase and partitioning behavior // Atmos. Chem. Phys. 2011. V. 11. P. 1895–1911. DOI: 10.5194/acp-11-1895-2011.
13. Saleh R., Shihadeh A., Khlystov A. On transport phenomena and equilibration time scales in thermodenuders // Atmos. Meas. Tech. 2011. V. 4. P. 571–581. DOI: 10.5194/amt-4-571-2011.
14. Backman J., Virkkula A., Petaja T., Aurela M., Frey A., Hillamo R. Impacts of volatilisation on light scattering and filter-based absorption measurements: A case study // Atmos. Meas. Tech. 2010. V. 3. P. 1205–1216. DOI: 10.5194/amt-3-1205-2010.
15. Hakkinen S.A.K., Aijala M., Lehtipalo K., Junninen H., Backman J., Virkkula A., Nieminen T., Vestenius M., Hakola H., Ehn M., Worsnop D.R., Kulmala M., Petaja T., Riipinen I. Long-term volatility measurements of submicron atmospheric aerosol in Hyytiala, Finland // Atmos. Chem. Phys. 2012. V. 12. P. 10771–10786. DOI: 10.5194/acp-12-10771-2012.
16. Huffman J.A., Docherty K.S., Aiken A.C., Cubison M.J., Ulbrich I.M., DeCarlo P.F., Sueper D., Jayne J.T., Worsnop D.R., Ziemann P.J., Jimenez J.L. Chemically-resolved aerosol volatility measurements from two megacity field studies // Atmos. Chem. Phys. 2009. V. 9. P. 7161–7182. DOI: 10.5194/acp-9-7161-2009.
17. Lyubovtseva Yu.S., Yudin N.I. O prirode letuchei i neletuchei sostavlyayushchei submikronnogo aerozolya // Izv. AN SSSR. Fiz. atmosf. i okeana. 1982. V. 18, N 7. P. 732–737.
18. Onlain-monitoring. Aerozol'naya stantsiya LOA. Institut optiki atmosfery im. V.E. Zueva. Tomsk, 2024. URL: aerosol.iao.ru (data obrashcheniya: 16.09.2024).
19. Terpugova S.A., Panchenko M.V., Dokukina T.A., Yausheva E.P., Kozlov V.S. Sezonnaya izmenchivost' soderzhaniya veshchestv raznoi stepeni letuchesti v prizemnom aerozole po dannym termoopticheskikh izmerenii // Optika atmosf. i okeana. 2010. V. 23, N 6. P. 439–443.
20. Panchenko M.V., Pol'kin V.V. Predstavlenie o mikrostrukture troposfernogo aerozolya Sibiri na osnove izmerenii fotoelektricheskim schetchikom // Optika atmosf. i okeana. 2001. V. 14, N 6–7. P. 526–537.
21. Pol’kin V.V., Panchenko M.V. Aspects of a technique for investigation of the volatility parameters of species in the composition of atmospheric aerosol in the size range 0.3–5 mm // Proc. SPIE. 2023. V. 12780. DOI: 10.1117/12.2688315.
22. Mushtaev V.I., Ul'yanov V.M. Sushka dispersnykh materialov. M.: Himiya, 1988. 352 p.
23. Zagainov V.A., Kostina E.M., Yudin N.I. Vliyanie poverkhnosti na energiyu aktivatsii ispareniya aerozol'nykh chastits sul'fata ammoniya // Him. fiz. 1985. V. 4, N 7. P. 1000–1003.
24. Ermakov A.N., Aloyan A.E., Arutyunyan V.O. Mekhanizm nefotokhimicheskogo obrazovaniya sul'fatov v aerozol'noi dymke // Meteorol. i gidrol. 2023. N 2. P. 90–99.
25. Spravochnik himika / pod red. B.P. Nikol'skogo. M.: Himiya, 1966. V. 1. 1072 p.
26. Cai M., Tan H., Chan C.K., Mochida M., Hatakeyama S., Kondo Y., Schurman M.I., Xu H., Li F., Shimada K., Li L., Deng Y., Yai H., Matsuki A., Qin Y., Zhao J. Comparison of aerosol hygroscopcity, volatility, and chemical composition between a suburban site in the Pearl River delta region and a marine site in Okinawa // Aerosol Air Qual. Res. 2017. V. 17. P. 3194–3208. DOI: 10.4209/aaqr.2017.01.0020.
27. Mikhailov E., Vlasenko S., Niessner R., Poschl U. Interaction of aerosol particles composed of protein and salts with water vapor: Hygroscopic growth and microstructural rearrangement // Atmos. Chem. Phys. 2004. V. 4. P. 323–350. DOI: 10.5194/acp-4-323-2004.
28. Hanel G. The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air // Adv. Geophys. 1976. V. 19. P. 74–183.
29. Warneck P. Chemistry of the Natural Atmosphere. San Diego, CA: Academic Press, 1988. V. 41. 330 p. (International Geophysics Series).
39. Panchenko M.V., Terpugova S.A., Kozlov V.S., Pol'kin V.V., Yausheva E.P. Godovoi khod kondensatsionnoi aktivnosti submikronnogo aerozolya v prizemnom sloe atmosfery Zapadnoi Sibiri // Optika atmosf. i okeana. 2005. V. 18, N 8. P. 678–683.
31. Terpugova S.A., Antonov A.V., Yausheva E.P., Chernov D.G., Pol’kin Vas.V., Pol’kin Vik.V., Shmargunov V.P., Panchenko M.V. Variability of monthly average characteristics of the aerosol condensation activity in annual behavior // Proc. SPIE. 2023. V. 12780. P. 127802C. DOI: 10.1117/12.2689797.