Vol. 37, issue 06, article # 4

Safatov A. S., Lapteva N. A., Ol'kin S. E., Andreeva I. S., Buryak G. A., Rebus M. E., Reznikova I. K., Alikina T. Yu., Baturina O. A., Kabilov M. R. Dependence of the concentrations of culturable microorganisms and total protein on meteorological conditions in the Novosibirsk surroundings. // Optika Atmosfery i Okeana. 2024. V. 37. No. 06. P. 468–474. DOI: 10.15372/AOO20240604 [in Russian].
Copy the reference to clipboard


Based on three years measurements, the dependence of the concentrations of cultivated microorganisms and total protein on meteorological parameters (wind direction and speed, solar radiation, temperature, atmospheric pressure, relative and absolute humidity) is studied. Sampling was carried out at the site of the FBRI State Scientific Center for Virology and Biotechnology “Vector” of Rospotrebnadzor, Koltsovo, Novosibirsk region, with simultaneous recording of weather conditions. The concentration of total protein was determined by the fluorescence method of the protein binding reagent, and the concentration of cultivated microorganisms by standard cultural methods. Weather data came from a weather station located near the sampling site. Analysis of the data obtained shows that the concentrations of biological components in aerosol increase with the average temperature, absolute humidity, and illumination during sampling and decrease with an increase in the average relative humidity, wind speed, and atmospheric pressure.


atmospheric bioaerosol, culturable microorganism concentration, total protein concentration, meteorological parameter


1. Bioaerosols / C.S. Cox, C.M. Waters (eds.). Boca Raton, London, Tokyo: CRC Press, Lewis Publ., 1995. 621 p.
2. Shrivastava M., Cappa C.D., Fan J., Goldstein A.H., Guenther A.B., Jimenez J.L., Kuang C., Laskin A., Martin S.T., Ng N.L., Petaja T., Pierce J.R., Rasch P.J., Roldin P., Seinfeld J.H., Shilling J., Smith J.N., Thornton J.A., Volkamer R., Wang J., Worsnop D.R., Zaveri R.A., Zelenyuk A., Zhang Q. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing // Rev. Geophys. 2017. V. 55, N 2. P. 509–559. DOI: 10.1002/2016RG000540.
3. Fröhlich-Nowoisky J., Kampf C.J., Weber B., Huffman J.A., Pöhlker C., Andreae M.O., Lang-Yona N., Burrows S.M., Gunthe S.S., Elbert W., Su H., Hoor P., Thines E., Hoffmann T., Després V.R., Pöschl U. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions // Atmos. Res. 2016. V. 182. P. 346–376. DOI: 10.1016/j.atmosres.2016.07.018.
4. Després V.R., Huffman J.A., Burrows S.M., Hoose C., Safatov A.S., Buryak G., Fröhlich-Nowoisky J., Elbert W., Andreae M.O., Pöschl U., Jaenicke R. Primary biological aerosols in the atmosphere: Observations and relevance // Tellus B. 2012. V. 64. P. 1–58. DOI: 10.3402/tellusb.v64i0.15598.
5. Huang S., Hu W., Chen J., Wu Z., Zhang D., Fu P. Overview of biological ice nucleating particles in the atmosphere // Environ. Int. 2021. V. 146. DOI: 10.1016/j.envint.2020.106197.
6. Freitas G.P., Stolle C., Kaye P.H., Stanley W., Herlemann D.P.R., Salter M.E., Zieger P. Emission of primary bioaerosol particles from Baltic seawater // Environ. Sci.: Atmos. 2022. V. 2. DOI: 10.1039/D2EA00047D.
7. Gladding T.L., Rolph C.A., Gwyther C.L., Kinnersley R., Walsh K., Tyrrel S. Concentration and composition of bioaerosol emissions from intensive farms: Pig and poultry livestock // J. Environ. Manag. 2020. V. 272. DOI: 10.1016/j.jenvman.2020. 111052.
8. Li W., Liu L., Xu L., Zhang J., Yuan Q., Ding X., Hu W., Fu P., Zhang D. Overview of primary biological aerosol particles from a Chinese boreal forest: Insight into morphology, size, and mixing state at microscopic scale // Sci. Total Environ. 2020. V. 719. DOI: 10.1016/j.scitotenv.2020.137520.
9. Moore R.A., Bomar C., Kobziar L.N., Christner B.C. Wildland fire as an atmospheric source of viable microbial aerosols and biological ice nucleating particles // ISME J. 2021. V. 15. P. 461–472. DOI: 10.1038/s43705-022-00089-5.
10. Pumkaeo P., Iwahashi H. Bioaerosol sources, sampling methods, and major categories: A comprehensive overview // Rev. Agric. Sci. 2020. V. 8. P. 261–278. DOI: 10.7831/ras.8.0_261.
11. Santander M.V., Schiffer J.M., Lee C., Axson J.L., Tauber M.J., Prather K.A. Factors controlling the transfer of biogenic organic species from seawater to sea spray aerosol // Sci. Rep. 2022. V. 12. DOI: 10.1038/s41598-022-07335-9.
12. Vettikkat L., Miettinen P., Buchholz A., Rantala P., Yu H., Schallhart S., Petäjä T., Seco R., Männistö E., Kulmala M., Tuittila E.-S., Guenther A.B., Schobesberger S. High emission rates and strong temperature response make boreal wetlands a large source of isoprene and terpenes // Atmos. Chem. Phys. 2023. V. 23. P. 2683–2698. DOI: 10.5194/acp-23-2683-2023.
13. Warren S.D., St. Clair L.L., Stark L.R., Lewis L.A., Pombubpa N., Kurbessoian T., Stajich J.E., Aanderud Z.T. Reproduction and dispersal of biological soil crust organisms // Front. Ecol. Evol. 2019. V. 7. DOI: 10.3389/FEVO.2019.00344.
14. Chen X., Kumari D., Acha V. A review on airborne microbes: The characteristics of sources, pathogenicity, and geography // Atmos. 2020. V. 11. DOI: 10.3390/ATMOS11090919.
15. Cáliz J., Triadó-Margarit X., Camarero L., Casamayor E.O. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations // PNAS. 2018. V. 115, N 48. P. 12229–12234. DOI: 10.1073/PNAS.1812826115.
16. Chen N.-T., Cheong N.-S., Lin C.-Y., Tseng C.-C., Su H.-J. Ambient viral and bacterial distribution during long-range transport in Northern Taiwan // Environ. Pollut. 2021. V. 270. DOI: 10.1016/j.envpol.2020.116231.
17. Els N., Larose C., Baumann-Stanzer K., Tignat-Perrier R., Keuschnig C., Vogel T.M., Sattler B. Microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation // Aerobiologia. 2019. V. 35. P. 671–701. DOI: 10.1007/s10453-019-09606-x.
18. Maki T., Noda J., Morimoto K., Aoki K., Kurosaki Y., Huang Z., Chen B., Matsuki A., Miyata H., Mitarai S. Long-range transport of airborne bacteria over East Asia: Asian dust events carry potentially nontuberculous Mycobacterium populations // Environ. Int. 2022. V. 168. DOI: 10.1016/j.envint.2022.107471.
19. Mayol E., Arrieta J.M., Jiménez M.A., Martínez-Asensio A., Garcias-Bonet N., Dachs J., González-Gaya B., Royer S.-J., Benítez-Barrios V.M., Fraile-Nuez E., Duarte C.M. Long-range transport of airborne microbes over the global tropical and subtropical ocean // Nature Commun. 2017. V. 8. DOI: 10.1038/s41467-017-00110-9.
20. Pickersgill D.A., Müller H., Després V.R. Advanced methods for spatial analysis of bioaerosol long-range transport processes // Geospatial Analyses of Earth Observation (EO) data / A. Pepe, Q. Zhao (eds.). 2019. Chapter 4. DOI: 10.5772/intechopen.86132.
21. Romano S. Bioaerosols: Composition, meteorological impact, and transport // Atmos. 2023. V. 14, N 3. DOI: 10.3390/ATMOS14030590.
22. Smith D.J., Jaffe D.A., Birmele M.N., Griffin D.W., Schuerger A.C., Hee J., Roberts M.S. Free tropospheric transport of microorganisms from Asia to North America // Microb. Ecol. 2012. V. 64. P. 973–985. DOI: 10.1007/s00248-012-0088-9.
23. Warren S.D., St. Clair L.L. Atmospheric transport and mixing of biological soil crust microorganisms // AIMS Environ. Sci. 2021. V. 8, N 5. P. 498–516. DOI: 10.3934/environsci.2021032.
24. Jiang G., Ma J., Wang C., Wang Y., Laghari A.A. Kinetics and mechanism analysis on self-decay of airborne bacteria: Biological and physical decay under different temperature // Sci. Total Environ. 2022. V. 832. DOI: 10.1016/j.scitotenv.2022.155033.
25. Barnes N.M., Wu H. Mechanisms regulating the airborne survival of Klebsiella pneumoniae under different relative humidity and temperature levels // Indoor Air. 2022. V. 32, N 2. DOI: 10.1111/ina.12991.
26. Chang C.-W., Lin M.-H., Huang S.-H., Horng Y.-J. Parameters affecting recoveries of viable Staphylococcus aureus bioaerosols in liquid-based samplers // J. Aerosol Sci. 2019. V. 136. P. 82–90. DOI: 10.1016/j.jaerosci.219.06.007.
27. Handler F.A. Predicting inactivation of Bacillus subtilis spores exposed to broadband and solar ultraviolet light // Environ. Eng. Sci. 2019. V. 36, N 6. P. 667–680. DOI: 10.1089/ees.2018.0404.
28. Madronich S., Björn L.O., McKenzie R.L. Solar UV radiation and microbial life in the atmosphere // Photochem. Photobiol. Sci. 2018. V. 17. P. 1918–1931. DOI: 10.1039/c7pp00407a.
29. Oswin H.P., Haddrell A.E., Hughes C., Otero-Fernandez M., Thomas R.J., Reid J.P. Oxidative stress contributes to bacterial airborne loss of viability // Microbiol. Spectr. 2023. V. 11, N 2. DOI: 10.1128/spectrum.03347-22.
30. Peccia J., Werth H.M., Miller S., Hernandez M. Effects of relative humidity on the ultraviolet induced inactivation of airborne bacteria // Aerosol Sci. Technol. 2001. V. 35, N 3. P. 728–740. DOI: 10.1080/02786820152546770.
31. Brown A.D. The survival of airborne microorganisms. III. Effects of temperature // Australian J. Biol. Sci. 1954. V. 7, N 4. P. 444–451. DOI: 10.1071/bi9540444.
32. Huang Z., Yu X., Liu Q., Maki T., Alam K., Wang Y., Xue F., Tang S., Du P., Dong Q., Wang D., Huang J. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors // Sci. Total Environ. 2024. V. 912. DOI: 10.1016/ j.scitotenv.2023.168818.
33. Krueger A.P., Smith R.F., Go I.G. The action of air ions on bacteria. I. Protective and lethal effects on suspensions of staphylococci in droplets // J. Gen. Physiol. 1957. V. 41, N 2. P. 359–381. DOI: 10.1085/jgp.41.2.359.
34. Sinha R.P., Häder D.-P. UV-induced DNA damage and repair: A review // Photochem. Photobiol. Sci. 2002. V. 1, N 4. P. 225–236. DOI: 10.1039/b201230h.
35. Shoshanim O., Baratz A. A new fluorescence-based methodology for studying bioaerosol scavenging processes using a hyperspectral LIF-LIDAR remote sensing system // Environ. Res. 2023. V. 217. DOI: 10.1016/j.envres.2022.114859.
36. You W.W., Haugland R.P., Ryan D.K., Haugland R.P. 3-(4-Carboxybenzoyl)quinoline-2-carboxaldehyde, a reagent with broad dynamic range for the assay of proteins and lipoproteins in solution // Annal. Biochem. 1997. V. 244, N 2. P. 277–282. DOI: 10.1006/abio.1996.9920.
37. Andreeva I.S., Safatov A.S., Morozova V.V., Solovyanova N.A., Puchkova L.I., Buryak G.A., Olkin S.E., Reznikova I.K., Emelyanova E.K., Okhlopkova O.V., Simonenkov D.V., Belan B.D. Composition and concentration of the biogenic components of the aerosols collected over Vasyugan marshes and Karakan pine forest at altitudes from 500 to 7000 m // Atmosphere. 2023. V. 14. DOI: 10.3390/atmos14020301.
38. Andreeva I.S., Baturina O.A., Safatov A.S., Solovyanova N.A., Alikina T.Y., Puchkova L.I., Rebus M.E., Buryak G.A., Olkin S.E., Kozlov A.S., Kabilov M.R. Kontsentratsiya i sostav kul'tiviruemykh mikroorganizmov v aerozolyakh atmosfernogo vozdukha g. Novosibirska v zavisimosti ot sezona goda // Optika atmosf. i okeana. 2022. V. 35, N 6. P. 465–470. DOI: 10.15372/AOO20220605; Andreeva I.S., Baturina O.A., Safatov A.S., Solovyanova N.A., Alikina T.Y., Puchkova L.I., Rebus M.E., Buryak G.A., Olkin S.E., Kozlov A.S., Kabilov M.R. Concentration and composition of cultured microorganisms in atmospheric air aerosols in Novosibirsk depending on the season // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 667–672. DOI: 10.1134/S1024856022060045.
39. Ashmarin I.P., Vorob'ev A.A. Statisticheskie metody v mikrobiologicheskikh issledovaniyakh. L.: Gos. izd. med. lit., 1962. 180 p.
40. Harrison R.M., Jones A.M., Biggins P.D.E., Pomeroy N., Cox C.S., Kidd S.P., Hobman J.L., Brown N.L., Beswick A. Climate factors influencing bacterial count in background air samples // Sci. Total Environ. 2005. V. 326. P. 151–180. DOI: 10.1007/s00484-004-0225-3.
41. Lighthart B. Mini-review of the concentration variations found in the alfresco atmospheric bacterial pollution // Aerobiol. 2000. V. 16, N 1. P. 7–16. DOI: 10.1023/A:1007694618888.
42. Tang J.W. The effect of environmental parameters on the survival of airborne infectious agents // J. R. Soc. Interface. 2009. V. 6, suppl. 6. P. S737–S746. DOI: 10.1098/rsif.2009.0227.focus.
43. Chang C.-W., Li S.-Y., Huang S.-H., Huang C.-K., Chen Y.-Y., Chen C.-C. Effects of ultraviolet germicidal irradiation and swirling motion on airborne Staphylococcus aureus, Pseudomonas aeruginosa and Legionella pneumophila under various relative humidities // Indoor Air. 2012. V. 23, N 1. P. 74–84. DOI: 10.1111/j.1600-0668.2012.00793.x.
44. Davis M.S., Bateman B. Relative humidity and the killing of bacteria. 1. Observations on Escherichia coli and Micrococcus lysodeikticus // J. Bact. 1960. V. 80, N 5. P. 577–579. DOI: 10.1128/jb.80.5.577-579.1960.
45. Safatov A.S., Andreeva I.S., Ankilov A.N., Baklanov A.M., Belan B.D., Borodulin A.I., Buryak G.A., Ivanova N.A., Kutsenogii K.P., Makarov V.I., Marchenko V.V., Marchenko Yu.V., Ol'kin S.E., Panchenko M.V., Petrishchenko V.A., P'yankov O.V., Reznikova I.K., Sergeev A.N. Dolya biogennoi komponenty v atmosfernom aerozole na yuge Zapadnoi Sibiri // Optika atmosf. i okeana. 2003. V. 16, N 5–6. P. 532–536.