Vol. 37, issue 06, article # 2

Vinogradova A. A., Gubanova D. P., Lesina E. A., Ivanova Yu. A. Dust aerosol from the Northern Caspian Sea regions in the near-surface air of the center of European Russia. // Optika Atmosfery i Okeana. 2024. V. 37. No. 06. P. 453–460. DOI: 10.15372/AOO20240602 [in Russian].
Copy the reference to clipboard

Abstract:

Dust aerosol from the areas of sandstorms is transported by air masses for thousands of kilometers, affecting the optical properties of the atmosphere, climate, and terrestrial natural objects. The northern Caspian region – the territories of Kalmykia, the Volga Delta, the Transcaspian lowlands and northwestern Kazakhstan – is a year-round source of dust aerosol. The increase in the level of aerosol pollution in the near-surface Moscow air, associated with long-range atmospheric transport of dust from the Caspian regions, is analyzed according to continuous observation data at the stations of the State Budgetary Institution Mosecomonitoring during 2011–2021. We have revealed eight months (about 6%) with episodes where the daily PM10 concentration in Moscow was higher than the MPC. Their duration ranges from 3 to 10 days and on average does not exceed 9% of the total number of days per year. The maximal values of daily PM10 concentration in the near-surface city air during such episodes are 2.7 ± 1.1 times higher than the corresponding monthly average ones. The months with episodes of long-range atmospheric dust transport to Moscow are characterized by increased air temperature by 1.9 ± 2.0 °C and reduced precipitation by 9 ± 13 mm on average relative to the corresponding norm values for Moscow.

Keywords:

urban aerosol, RM10 and PM2.5, near-surface air, Moscow, dust from the Caspian Sea regions, long-range atmospheric transport, air temperature, precipitation

Figures:

References:

1. Cess R.D., Potter G.L., Ghan S.J., Gates W.L. The climatic effects of large injections of atmospheric smoke and dust: A study of climate feedback mechanisms with one- and three-dimensional climate models // J. Geophys. Res. 1985. V. 90, N D7. P. 12937–12950. DOI: 10.1029/JD090iD07p12937.
2. Schepanski K. Transport of mineral dust and its impact on climate // Geosciences. 2018. V. 8, N 5. P. 151. DOI: 10.3390/geosciences8050151.
3. Chaibou A.A.S., Ma A., Sha T. Dust radiative forcing and its impact on surface energy budget over West Africa // Sci. Rep. 2020. V. 10. P. 12236. DOI: 10.1038/s41598-020-69223-4.
4. Gorchakova I.A., Mokhov I.I., Rublev A.N. Radiatsionnyi i temperaturnyi effekty moshchnogo vynosa pylevogo aerozolya v atmosferu // Izv. RAN. Fiz. atmosf. i okeana. 2015. V. 51, N 2. P. 131–145.
5. Hu Z., Huang J., Zhao C., Jin Q., Ma Y., Yang B. Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau // Atmos. Chem. Phys. 2020. V. 20, N 3. P. 1507–1529. DOI: 10.5194/acp-20-1507-2020.
6. Yang L., Shi Z., Sun H., Xie X., Liu X., An Z. Distinct effects of winter monsoon and westerly circulation on dust aerosol transport over East Asia // Theor. Appl. Climatol. 2021. V. 144, N 3. P. 1031–1042. DOI: 10.1007/s00704-021-03579-z.
7. Vijayakumara K., Devara P.C.S., Vijaya Bhaskara Rao S., Jayasankar C.K. Dust aerosol characterization and transport features based on combined ground-based. Satellite and model-simulated data // Aeolian Res. 2016. V. 21, N 6. P. 75–85. DOI: 10.1016/j.aeolia.2016.03.003.
8. Zayakhanov A.S., Zhamsueva G.S., Naguslaev S.A., Tsydypov V.V., Ayurzhanaev A.A., Sakerin S.M., Kabanov D.M., Azzayaa D., Oyunchimeg D. Prostranstvenno-vremennye kharakteristiki AOT atmosfery v pustyne Gobi po dannym nazemnykh nablyudenii // Optika atmosf. i okeana. 2012. V. 25, N 4. P. 327–334.
9. Abdullaev S.F., Maslov V.A., Nazarov B.I., Madvaliev U., Davlatshoev T. Elementnyi sostav pochv i pylevogo aerozolya yugo-tsentral'noi chasti Tadzhikistana // Optika atmosf. i okeana. 2015. V. 28, N 3. P. 246–255.
10. Xiong J., Zhao T., Bai Y., Liu Y., Han Y., Guo C. Climate characteristics of dust aerosol and its transport in major global dust source regions // J. Atmos. Sol.-Terr. Phys. 2020. V. 209: 105415. DOI: 10.1016/j.jastp.2020.
11. Prospero J. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States // PNAS. 1999. V. 96, N 7. P. 3396–3403. DOI: 10.1073/pnas.96.7.3396.
12. Zhang Y., Cai Y.J., Yu F., Luo G., Chou C.C.K. Seasonal variations and long-term trend of mineral dust aerosols over the Taiwan region // Aerosol Air Qual. Res. 2021. V. 21, N 5: 200433. DOI: 10.4209/aaqr.2020.07.0433.
13. Guedes A., Landulfo E., Montilla-Rosero E., Lopes F.J.S., Hoelzemann J.J., Fernandez J.H., Silva M.P.A., Santos R.S.S., Guerrero-Rascado J.L., Alados-Arboledas L. Detection of Saharan mineral dust aerosol transport over Brazilian northeast through a depolarization lidar // EPJ Web Conf. 2018. V. 176: 05036. DOI: 10.1051/epjconf/201817605036.
14. Asher E.C., Christensen J.N., Post A., Perry K., Cliff S.S., Zhao Y., Trousdell J., Faloona I. The transport of Asian dust and combustion aerosols and associated ozone to North America as observed from a mountaintop monitoring site in the California coast range // JGR Atmospheres. 2018. V. 123, N 10. P. 5667–5680. DOI: 10.1029/2017JD028075.
15. Silva H.G., Lopes F.M., Pereira S., Nicoll K., Barbosa S.M., Conceição R., Neves S., Harrison R.G., Pereira M.C. Saharan dust electrification perceived by a triangle of atmospheric electricity stations in Southern Portugal // J. Electrost. 2016. V. 84, N 12. P. 106–120. DOI: 10.1016/j.elstat.2016.10.002.
16. Provençal S., Kishcha P., da Silva A.M., Elhacham E., Alpert P. AOD distributions and trends of major aerosol species over a selection of the world’s most populated cities based on the 1st version of NASA’s MERRA Aerosol Reanalysis // Urban Clim. 2017. V. 20, N 4. P. 168–191. DOI: 10.1016/j.uclim.2017.04.001.
17. Pey J., Querol X., Alastuey A., Forastiere F., Stafoggia M. African dust outbreaks over the Mediterranean Basin during 2001–2011: PM10 concentrations. Phenomenology and trends, and its relation with synoptic and mesoscale meteorology // Atmos. Chem. Phys. 2013. V. 13, N 3. P. 1395–1410. DOI: 10.5194/acp-13-1395-2013.
18. Filonchyk M. Characteristics of the severe March 2021 Gobi Desert dust storm and its impact on air pollution in China // Chemosphere. 2022. V. 287, N 3. P. 132219. DOI: 10.1016/j.chemosphere.2021.132219.
19. Kondrat'ev I.I., Kachura A.N., Yurchenko S.G., Mezentseva L.I., Roshchupkin G.T., Semykina G.I. Sinopticheskie i geokhimicheskie aspekty anomal'nogo vynosa pyli na yuge Primorskogo Kraya // Vestn. DO RAN. 2005. V. 121, N 3. PС. 55–65.
20. Guo J., Lou M., Miao Y., Wang Y., Zeng Z., Liu H., He J., Xu H., Wang F., Min M., Zhai P. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling // Environ. Poll. 2017. V. 230. P. 1030–1039. DOI: 10.1016/j.envpol.2017.07.062.
21. Kalinskaya D.V., Papkova A.S., Varenik A.V. Anomal'nyi perenos pogloshchayushchego aerozolya nad Cрernym morem za vesennii period 2020  year // Sovrem. probl. distancionnogo zondirovaniya Zemli iz kosmosa. 2021. V. 18, N 2. P. 287–298. DOI: 10.21046/2070-7401-2021-18-2-287-298.
22. Kutuzov S.C., Mikhalenko V.N., Shakhgedanova M., Zhino P., Kozachek A.V., Lavrent'ev I.I., Kuderina T.M., Popov G.V. Puti dal'nego perenosa pyli na ledniki Kavkaza i khimicheskii sostav snega na Zapadnom plato El'brusa // Led i Sneg. 2014. V. 127, N 3. P. 5–15. DOI: 10.15356/2076-6734-2014-3-5-15.
23. Sel'skokhozyaistvennyi slovar'-spravochnik / pod red. A.I. Gaistera. M.; L.: Sel'khozgiz, 1934. 1280 p.
24. Shevchenko V.P., Korobov V.B., Lisitsyn A.P., Aleshinskaya A.S., Bogdanova O.Yu., Goryunova N.V., Grishchenko I.V., Dara O.M., Zavernina N.N., Kurteeva E.I., Novichkova E.A., Pokrovskii O.S., Sapozhnikov F.V. Pervye dannye o sostave pyli, okrasivshei sneg na evropeiskom severe Rossii v zheltyi tsvet (March 2008 year) // Dokl. RAN. 2010. V. 431, N 5. P. 675–679.
25. Shukurov K.A., Chkhetiani O.G. Probability of transport of air parcels from the arid lands in the Southern Russia to Moscow region // Proc. SPIE. 2017. DOI: 10.1117/12.2287932.
26. Shukurov K.A., Shukurova L.M. Regiony-istochniki nitrata ammoniya, sul'fata ammoniya i prirodnykh silikatov v prizemnom aerozole Zapadnogo Podmoskov'ya // Izv. RAN. Fiz. atmosf. i okeana. 2017. V. 53, N 3. P. 360–369. DOI: 10.7868/s0002351517030142.
27. Gubanova D.P., Vinogradova A.A., Iordanskii M.A., Skorokhod A.I. Vremennye variatsii sostava atmosfernogo aerozolya v Moskve vesnoi 2020 year // Izv. RAN. Fiz. atmosf. i okeana. 2021. V. 57, N 3. P. 334–348. DOI: 10.31857/s0002351521030056.
28. Gubanova D., Chkhetiani O., Vinogradova A., Skorokhod A., Iordanskii M. Atmospheric transport of dust aerosol from arid zones to the Moscow region during fall 2020 // AIMS Geosci. 2022. V. 8, N 2. P. 277–302. DOI: 10.3934/geosci.2022017.
28. Vinogradova A.A., Gubanova D.P., Iordanskii M.A., Skorokhod A.I. Vliyanie meteorologicheskikh uslovii i dal'nego perenosa vozdushnykh mass na sostav prizemnogo aerozolya v Moskve v zimnie sezony // Optika atmosf. i okeana. 2022. V. 35, N 6. P. 436–446; Vinogradova A.A., Gubanova D.P., Iordanskii M.A., Skorokhod A.I. Effect of meteorological conditions and long-range air mass transport on surface aerosol composition in winter Moscow // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 758–768. DOI: 10.1134/S1024856022060276.
30. Sokhi R.S., Singh V., Querol X., Finardi S., Targino A.C., de Fatima Andrade M., Pavlovic R., Garland R.M., Massagué J., Kong Sh., Baklanov A., Lu Ren, Tarasova O., Carmichael G., Peuch V.-H., Anand V., Arbilla G., Badali K., Beig G., Belalcazar L.C., Bolignano A., Brimblecombe P., Camacho P., Casallas A., Charland J.-P., Choi J., Chourdakis E., Coll I., Collins M., Cyrys J., da Silva C.M., Di Giosa A.D., Di Leo A., Ferro C., Gavidia-Calderon M., Gayen A., Ginzburg A., Godefroy F., Gonzalez Yu.A., Guevara-Luna M., Haque Sk.M., Havenga H., Herod D., Hõrrak U., Hussein T., Ibarra S., Jaimes M., Kaasik M., Khaiwal R., Kim J., Kousa A., Kukkonen Ja., Kulmala M., Kuula J., La Violette N., Lanzani G., Xi Liu, MacDougall S., Manseau P.M., Marchegiani G., McDonald B., Mishra S.V., Molina L.T., Mooibroek D., Mor S., Moussiopoulos N., Murena F., Niemi Ja.V., Noe S., Nogueira T., Norman M., Pérez-Camaño Ju.L., Petäjä T., Piketh S., Rathod A., Reid K., Retama A., Rivera O., Rojas N.Y., Rojas-Quincho J.P., José R.S., Sánchez O., Seguel R.J., Sillanpää S., Su Yu., Tapper N., Terrazas A., Timonen H., Toscano D., Tsegas G., Velders G.J.M., Vlachokostas Ch., von Schneidemesser E., Vpm R., Yadav R., Zalakeviciute R., Zavala M. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions // Environ. Intern. 2021. V. 157. P. 106818. DOI: 10.1016/j.envint.2021.106818.
31. Mosekomonitoring [M.], 2018–2024. URL: https: //mosecom.mos.ru/stations/ (data obrashcheniya: 24.07.2023).
32. Gubanova D.P., Vinogradova A.A., Lezina E.A., Iordanskii M.A., Isakov A.A. Uslovno fonovyi uroven' aerozol'nogo zagryazneniya prizemnogo vozdukha v Moskve i prigorode: sezonnye variatsii // Izv. RAN. Fiz. atmosf. i okeana. 2023. V. 59, N 6. P. 754–773. DOI: 10.31857/S0002351523060056.
33. Gubanova D.P., Vinogradova A.A., Iordanskii M.A., Skorokhod A.I. Variability of near-surface aerosol composition in Moscow in 2020–2021: Episodes of extreme air pollution of different genesis // Atmosphere. 2022. V. 13, N 4. P. 574–599. DOI: 10.3390/atmos13040574.
34. NOAA Air Resources Laboratory. HYSPLIT. URL: https://www.ready.noaa.gov/ HYSPLIT.php (last access: 24.01.2024).
35. NASA’s Earth Observing System Data and Information System (EOSDIS). URL: http://giovanni.gsfc.nasa.gov/giovanni (last access: 02.02.2024).
36. Arkhiv pogody [M.], 2004–2024. URL: http://rp5.ru (data obrashcheniya: 17.12.2023).
37. Pogoda i klimat. Arkhiv fakticheskoi pogody [B.m.], 2004–2024. URL: http://www.pogodaiklimat.ru/archive.php (data obrashcheniya 28.12.2023).
38. NASA: AERONET Data. URL: https://aeronet.gsfc.nasa.gov/cgi-bin/data_display_aod_v3 (data obrashcheniya: 08.02.2024).