Vol. 37, issue 06, article # 11

Malakhova V. V., Kraineva M. V. Sensitivity of the model of methane emission from the Arctic shelf seas to the parameterization of the gas exchange process. // Optika Atmosfery i Okeana. 2024. V. 37. No. 06. P. 519–524. DOI: 10.15372/AOO20240611 [in Russian].
Copy the reference to clipboard

Abstract:

There is considerable uncertainty about the methane emission from the Arctic shelf seas. Methane fluxes in this region can be underestimated and play a significant role due to the large volume of gas contained in bottom sediments in the permafrost and gas hydrates. We have analyzed the model sensitivity to the parametrization of gas exchange processes on the sea surface. The study is based on the numerical modeling results of the transport of dissolved methane in the seas of the Arctic. The dissolved methane transport model is included in the basic model of the ocean and sea ice developed at the Institute of Computational Mathematics and Mathematics, Siberian Branch, Russian Academy of Sciences. Estimates of methane emissions into the atmosphere were made with various parametrization of the gas exchange process in the "water  atmosphere" and "water  ice  atmosphere" systems using NCEP/NCAR reanalysis data. The uncertainty of the estimate of annual methane emission amounted to 6–12% when considering different dependencies of gas exchange on wind. The scheme accounting the ice cover has a more pronounced influence on the flux: the uncertainty increased to 50–130%. Parameterization of the relationship between ice cover and gas exchange can have a great influence on the calculated methane fluxes and lead to underestimation of its emission from the seas of the Arctic shelf.

Keywords:

methane emission, dissolved methane transport, gas exchange, Arctic, numerical simulation

Figures:

References:

1. Etminan M., Myhre G., Highwood E., Shine K. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing // Geophys. Res. Lett. 2016. V. 43. P. 12614–12623. DOI: 10.1002/2016GL071930.
2. Kirschke S., Bousquet P., Ciais P., Saunois M., Canadell J.G., Dlugokencky E.J., Bergamaschi P., Bergmann D., Blake D.R., Bruhwiler L. Three decades of global methane sources and sinks // Nat. Geosci. 2013. V. 6. P. 813–823. DOI: 10.1038/ngeo1955.
3. Ruppel C.D., Kessler J.D. The interaction of climate change and methane hydrates // Rev. Geophys. 2017. V. 55. P. 126–168. DOI: 10.1002/2016RG000534.
4. Malakhova V.V. The response of the Arctic Ocean gas hydrate associated with subsea permafrost to natural and anthropogenic climate changes // IOP Conf. S.: Earth Environ. Sci. 2020. V. 606. P. 012035. DOI: 10.1088/1755-1315/606/1/012035.
5. Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G., Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O., Meluzov A., Gustafsson O. The East Siberian Arctic shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice // Phil. Trans. Royal Soc. A: Math., Phys., Eng. Sci. 2015. V. 373, N 2052. P. 20140451. DOI: 10.1098/rsta.2014.0451.
6. Thornton B.F., Geibel M.C., Crill P.M., Humborg C., Mörth C.-M. Methane fluxes from the sea to the atmosphere across the Siberian shelf seas // Geophys. Res. Lett. 2016. V. 43. P. 5869–5877. DOI: 10.1098/rsta.2014.0451.
7. Berchet A., Bousquet P., Pison I., Locatelli R., Chevallier F., Paris J.-D., Dlugokencky E.J., Laurila T., Hatakka J., Viisanen Y., Worthy D.E.J., Nisbet E.G., Fisher R., France J., Lowry D., Ivakhov V., Hermansen O. Atmospheric constraints on the methane emissions from the East Siberian Shelf // Atmos. Chem. Phys. 2016. V. 16, N 6. P. 4147–4157. DOI: 10.5194/acp-16-4147-2016.
8. Tohjima Y., Zeng J., Shirai T., Niwa Y., Ishidoya S., Taketani F., Sasano D., Kosugi N., Kameyama S., Takashima H., Nara H., Morimoto S. Estimation of CH4 emissions from the East Siberian Arctic shelf based on atmospheric observations aboard the R/V Mirai during fall cruises from 2012 to 2017 // Polar Sci. 2020. P. 100571. DOI: 10.1016/j.polar.2020.100571.
9. Wåhlström I., Meier H.E.M. A model sensitivity study for the sea–air exchange of methane in the Laptev Sea, Arctic Ocean // Tellus B. 2014. V. 66. DOI: 10.3402/tellusb.v66.24174.
10. Malaxova V.V., Golubeva E.N. O vozmozhnoi emissii metana na shel'fe morei Vostochnoi Arktiki // Optika atmosf. i okeana. 2013. V. 26, N 6. P. 452–458.
11. Malakhova V., Golubeva E. Model study of the effects of climate change on the methane emissions on the Arctic shelves // Atmosphere. 2022. V. 13. P. 274. DOI: 10.3390/atmos13020274.
12. Wanninkhof R., Asher W.E., Ho D.T., Sweeney C., McGillis W.R. Advances in quantifying air–sea gas exchange and environmental forcing // Ann. Rev. Marine Sci. 2009. V. 1. P. 213–244. DOI: 10.1146/annurev.marine.010908.163742.
13. Loose B., McGillis W.R., Perovich D., Zapp C.J., Schlosser P. A parameter model of gas exchange for the seasonal sea ice zone // Ocean Sci. 2014. V. 10, N 1. P. 17–28. DOI: 10.5194/os-10-17-2014.
14. Bigdeli A., Hara T., Loose B., Nguyen A.T. Wave attenuation and gas exchange velocity in Marginal sea ice zone // J. Geophys. Res.: Ocean. 2018. V123, N 3. P. 2293–2304. DOI: 10.1002/2017JC013380.
15. Rutgers van der Loeff M.M., Cassar N., Nicolaus M., Rabe B., Stimac I. The influence of sea ice cover on air–sea gas exchange estimated with radon-222 profiles // J. Geophys. Res.: Ocean. 2014. V. 119, N 5. P. 2735–2751. DOI: 10.1002/2013JC009321.
16. Loose B., Schlosser P., Perovich D., Ringelberg D., Ho D.T., Takahashi T., Richter-Menge J., Reynolds C.M., McGillis W.R., Tison J.-L. Gas diffusion through columnar laboratory sea ice: Implications for mixed-layer ventilation of CO2 in the seasonal ice zone // Tellus B. 2011. V. 63. P. 23–39. DOI: 10.1111/j.1600-0889.2010.00506.x.
17. Repina I.A., Artamonov A.Yu. Morfometricheskie neodnorodnosti morskogo l'da po dannym distantsionnogo zondirovaniya i nazemnyx izmerenii // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2022. V. 19, N 6. P. 205–221. DOI: 10.21046/2070-7401-2022-19-6-205-221.
18. Golubeva E.N. Chislennoe modelirovanie dinamiki atlanticheskix vod v Arkticheskom basseine s ispol'zovaniem sxemy QUICKEST // Vychislitel'nye tekhnologii. 2008. V. 13, N 5. P. 11–24
19. Platov G.A., Golubeva E.N., Kraineva M.V., Malakhova V.V. Modeling of climate tendencies in Arctic seas based on atmospheric forcing EOF decomposition // Ocean Dyn. 2019. V. 69, N 6. P. 747–767. DOI: 10.1007/s10236-019-01259-1.
20. Hunke E.C., Dukowicz J.K. An elastic-viscous-plastic model for ice dynamics // J. Phys. Oceanography. 1997. V. 27. P. 1849–1867. DOI: 10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.
21. Large W., Yeager S. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies // NCAR Technical Note: NCAR/TN-460+STR. CGD Division of the National Center for Atmospheric Research. 2004. 105 p. DOI: 10.5065/D6KK98Q6.
22. Mau S., Gentz T., Körber J.-H., Torres M.E., Römer M., Sahling H., Wintersteller P., Martinez R., Schlüter M., Helmke E. Seasonal methane accumulation and release from a gas emission site in the central North Sea // Biogeoscie. 2015. V. 12. P. 5261–5276. DOI: 10.5194/ bg-12-5261-2015.
23. Malakhova V.V., Eliseev A.V. Subsea permafrost and associated methane hydrate stability zone: How long can they survive in the future? // Theor. Appl. Climatol. 2024. V. 155. P. 3329–3346. DOI: 10.1007/s00704-023-04804-7.
24. Wanninkhof R. Relationship between wind-speed and gas-exchange over the ocean // J. Geophys. Res. 1992. V. 97. P. 7373–7382. DOI: 10.5281/zenodo.5728529.
25. Wiesenburg D.A., Guinasso N.L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water // J. Chem. Eng. Data. 1979. V. 24, N 4. P. 356–360. DOI: 10.1021/je60083a006.
26. Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited // Limnol. Oceanogr.-Meth. 2014. V. 12. P. 351–362. DOI: 10.1021/je60083a006.
27. Runge J., Nowack P., Kretschmer M., Flaxman S., Sejdinovic D. Detecting and quantifying causal associations in large nonlinear time series datasets // Sci. Adv. 2019. V. 5, eaau4996. DOI: 10.1126/sciadv.aau4996.
28. Zhang W., Perrie W., Vagle S. Impacts of winter storms on air–sea gas exchange // Geophys. Res. Lett. 2006. V. 33. P. L14803. DOI: 10.1029/2005GL025257.
29. McGillis W.R., Edson J.B., Hare J.E., Fairall C.W. Direct covariance of air–sea CO2 fluxes // J. Geophys. Res. 2001. V. 106. P. 16729–16745. DOI: 10.1029/2000JC000506.
30. Loose B., Kelly R.P., Bigdeli A., Williams W., Krishfield R., Rutgers van der Loeff M., Moran S.B. How well does wind speed predict air–sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean // J. Geophys. Res. Ocean. 2017. V. 122, N 5. P. 3696–3714. DOI: 10.1002/2016JC012460.
31. Weber T., Wiseman N.A., Kock A. Global ocean methane emissions dominated by shallow coastal waters // Nat. Commun. 2019. V. 10. P. 4584. DOI: 10.1038/s41467-019-12541-7.