Vol. 37, issue 06, article # 1

Kobzeva T. V., Dul'tseva G. G., Dubtsov S. N., Stekleneva M. E. Natural and anthropogenic sources of organic aerosol in the atmosphere: kinetics and mechanism of formation in the forest-steppe zone of Western Siberia. // Optika Atmosfery i Okeana. 2024. V. 37. No. 06. P. 447–452. DOI: 10.15372/AOO20240601 [in Russian].
Copy the reference to clipboard


Contribution of carbonyl compounds into the generation of atmospheric organic aerosol in the presence of typical urban air pollutants is investigated. Aldehydes and ketones entering the atmosphere from natural and anthropogenic sources are identified by means of high-performance liquid chromatography. Field measurements were carried out on the territory of Novosibirsk scientific center and in adjacent forest areas. It is shown that the transport of typical gaseous urban air pollutants (nitrogen oxides and ozone) into the air of forest areas and the transport of biogenic compounds (alkenes and aldehydes) to the urban territory cause sharp changes of the kinetics and mechanism of organic aerosol generation in comparison with the processes taking place in typical urban atmosphere. Thus, in the presence of ozone, the yield of aerosol products from formaldehyde, acetaldehyde, and propanal photonucleation increases by a factor of 4–8, while for benzaldehyde and acrolein it exhibits 5- and 30-fold decrease, respectively. For aromatic substituted aldehydes and furfural, aerosol yield slightly increases (only up to 30 %). The results make it possible to carry out quantitative evaluation of the capacity of natural and anthropogenic sources of organic aerosol in the forest-steppe zone of Western Siberia and predict the biological effect of aerosol generated in the presence of various pollutants.


atmospheric chemistry, aldehydes, photonucleation, aerosol formation mechanism, kinetic simulationм


1. Liu Yaw, Liu Yam, Wang M., Dong X., Zheng Y., Shrivastava M., Qian Y., Bai H., Li X., Yang X.-Q. Anthropogenic–biogenic interaction amplifies warming from emission reduction over the southeastern US // Environ. Res. Lett. 2021. V. 16, N 12. DOI: 10.1088/ 1748-9326/ac3285.
2. Porter W.C., Jose L. Jimenez J.L., Kelley C. Barsanti K.C. Quantifying atmospheric parameter ranges for ambient secondary organic aerosol formation // ACS Earth Space Chem. 2021. V. 5, N 9. P. 2380–2397. DOI: 10.1021/acsearthspacechem.1c00090.
3. Sasidharan S., He Y., Akherati A., Li Q., Li W., Cocker D., McDonald B.C., Coggon M.M., Seltzer K.M., Pye H.O.T., Pierce J.R., Jathar Sh.H. Secondary organic aerosol formation from volatile chemical product emissions: Model parameters and contributions to anthropogenic aerosol // Environ. Sci. Technol. 2023. V. 57, N 32. P. 11891–11902. DOI: 10.1021/acs.est.3c00683.
4. Franklin E.B., Yee L.D., Wernis R., Isaacman-Van Wertz G., Kreisberg N., Weber R., Zhang H., Palm B.B., Hu W., Campuzano-Jost P., Day D.A., Manzi A., Artaxo P., De Souza R.A.F., Jimenez J.L., Martin S.T., Goldstein A.H. Chemical signatures of seasonally unique anthropogenic influences on organic aerosol composition in the central Amazon // Environ. Sci. Technol. 2023. V. 57, N 15. P. 6263–6272. DOI: 10.1021/acs.est.2c07260.
5. Barua Sh., Iyer S., Kumar A., Seal P., Rissanen M. An aldehyde as a rapid source of secondary aerosol precursors: Theoretical and experimental study of hexanal autoxidation // Atm. Chem. Phys. 2023. V. 23, N 18. P. 10517–10532. DOI: 10.5194/acp-23-10517-2023.
6. Bianchi F., Kurtén T., Riva M., Mohr C., Rissa­nen M.P., Roldin P., Berndt T., Crounse J.D., Wen­nberg P.O., Mentel T.F., Wildt J., Junninen H., Jokinen T., Kulmala M., Worsnop D.R., Thornton J.A., Donahue N., Kjaergaard H.G., Ehn M. Highly oxygenated organic molecules (HOM) from gas-phase autoxidation involving peroxy radicals: A key contributor to atmospheric aerosol // Chem. Rev. 2019. V. 119, N 6. P. 3472–3509. DOI: 10.102/acs.chemrev.8b00395.
7. Atkinson R. Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method // Atmos. Environ. 2007. V. 41, N 38. P. 8468–8485. DOI: 10.1016/j.atmosenv.2007.07.002.
8. Valiulin S.V., Onischuk A.A., Baklanov A.M., Dubtsov S.N., Dultseva G.G., An’kov S.V., Tolstikova T.G.,Rusinov V.L., Charushin V.N. An integrated aerosol setup for therapeutics and toxicological testing: Generation techniques and measurement instrumentation // Measurement. 2021. V. 181. Art. 109659. DOI: 10.106/j.measurement.2021.109659.
9. Keiko A.V. Programma NICK (Numerical Instrument for Chemical Kinetics), versiya 2.2. Irkutsk, 1996. 26 p. (Prepr. / Institut sistem energetiki im. L.A. Melent'eva).
10. Wang G., Iradukunda Y., Shi G., Sanga P., Niu X., Wu Zh. Hydroxyl, hydroperoxyl free radicals determination methods in atmosphere and troposphere // J. Environ. Sci. 2021. V. 99. P. 324–335. DOI: 10.1016/j.jes.2020.06.038
11. Dultseva G.G., Nemova E.F., Dubtsov S.N., Plokhotnichenko M.E. Aerozoleobrazuyushchii potentsial produktov atmosfernogo fotookisleniya biogennyx organicheskix soedinenii // Optika atmosf. i okeana. 2020. V. 33, N 6. P. 437–440; Dultseva G.G., Nemova E.F., Dubtsov S.N., Plokhotnichenko M.E. Aerosol generating potential of the products of atmospheric photooxidation of biogenic organic compounds // Atmos. Ocean. Opt. 2020. V. 33, N 5. P. 545–548. DOI: 10.1134/ S1024856020050073.