Vol. 37, issue 05, article # 12

Tartakovsky V. A., Maksimov V. G., Krutikov V. A. Decomposition of the latitudinal variation in the  long-term average temperature using data from weather stations in the Northern Hemisphere and on astronomical insolation in 1897–2010. // Optika Atmosfery i Okeana. 2024. V. 37. No. 05. P. 438–444. DOI: 10.15372/AOO20240512 [in Russian].
Copy the reference to clipboard

Abstract:

Temperature data at weather stations in the Northern Hemisphere and astronomical insolation data are ordered by increasing latitude and analyzed together for different samples between 1897 and 2010. By step-by-step regression of the latitudinal variation in the long-term average temperature to a polynomial of astronomical insolation, a latitudinal temperature trend determined by the Sun and fluctuating regression residuals, in which individual features of data appear, are identified. The absence of interaction of these components is numerically achieved for any samples. It has been established that in the Northern Hemisphere for the available samples, the latitudinal trend in the long-term average temperature completely determines the warming and contributes about 82% to the total temperature dispersion. The boundaries of areas where temperatures are above and below the latitudinal trend in the long-term average temperatures reveal known geographic structures, thereby verifying the trend.

Keywords:

astronomical insolation, latitudinal temperature variation, polynomial regression, latitudinal temperature trend

Figures:

References:

1. Albert A., Alfaro R., Alvarez C., Arteaga-Velázquez J. C., Rojas Avila D., Solares Ayala H. A., Babu R., Belmont-Moreno E., Brisbois C., Caballero-Mora K. S., Capistrán T., Carramiñana A., Casanova S., Chaparro-Amaro O., Cotti U., Cotzomi J., Coutiño de León S., De la Fuente E., Hernandez Diaz R., Dingus B.L., DuVernois M.A., Durocher M., Díaz-Vélez J. C., Ellsworth R.W., Engel K., Espinoza C., Fan K.L., Fang K., Alonso Fernández M., Fleischhack H., Fraija N., García-González J.A., Garfias F., González M.M., Goodman J.A., Harding J. P., Hernandez S., Hinton J., Huang D., Hueyotl-Zahuantitla F., Hüntemeyer P., Iriarte A., Joshi V., Kaufmann S., Lee J., Linnemann J.T., Longinotti A.L., Luis-Raya G., Malone K., Martinez O., Martínez-Castro J., Matthews J.A., Miranda-Romagnoli P., Morales-Soto J.A., Moreno E., Mostafá M., Nayerhoda A., Nellen L., Nisa M.U., Noriega-Papaqui R., Olivera-Nieto L., Omodei N., Araujo Pérez Y., Pérez-Pérez E.G., Rho C.D., Rosa-González D., Ruiz-Velasco E., Salazar H., Salazar-Gallegos D., Sandoval A., Schneider M., Serna-Franco J., Smith A.J., Son Y., Springer R.W., Tibolla O., Tollefson K., Torres I., Torres-Escobedo R., Turner R., Ureña-Mena F., Varela E., Villaseñor L., Wang X., Watson I. J., Willox E., Yun-Cárcamo S., Zhou H., de León C., Beacom J. F., Linden T., Ng K.C.Y., Peter A.H.G., Zhou B. (HAWC Collaboration) Discovery of gamma rays from the quiescent Sun with HAWC // Phys. Rev. Lett. 2023. V. 131, N 5. P. 051201. DOI: 10.1103/PhysRevLett.131.051201.
2. Prigozhin I., Stengers I. Poryadok iz khaosa: Novyi dialog cheloveka s prirodoi. M.: Progress, 1986. 432 p.
3. Insolyatsiya. Razlichiya v trebovaniyakh k insolyatsii v razlichnykh klimaticheskikh raionakh. Solntsezashchitnye sredstva. URL: https:// studfile.net/preview/5428066/page:65/ (data obrashcheniya: 10.11.2023).
4. Berger A., Li X.S., Loutre M.F. Modelling Northern Hemisphere ice volume over the last 3 Ma // Sci. Direct. Quatern. Sci. Rev. V. 18, N. 1. 1999. P. 1-11.
5. Elkibbi M., Rial José A. An outsider's review of the astronomical theory of the climate: Is the eccentricity-driven insolation the main driver of the ice ages? // Earth Sci. Rev. 2001. V. 56, N 1. P. 161–177. DOI: 10.1016/S0012-8252(01)00061.
6. Rousseau Denis-Didier, Bagniewski W., Ghil M. Abrupt changes and the astronomical theory: Are they related? // Clim. Past. 2022. V. 18, № 2. P. 249–271. DOI: 10.5194/cp-18-249-2022.
7. Dymnikov V.P., Volodin E.M., Galin V.Ya., Glazunov A.B., Gritsun A.C., Dianskii H.A., Lykosov V.N. Klimat i ego izmeneniya: matematicheskaya teoriya i chislennoe modelirovanie // Sibir. zhurn. vychislitel'noi matematiki. 2003. V. 6, N 4. P. 347.
8. Lobanov V.A. Lektsii po klimatologii. Pt. 2. Dinamika klimata. V 2 kn.: Kn. 2: SPb.: RGGMU, 2018. 377 p.
9. Tartakovskii V.A., Chered'ko N.N., Maksimov V.G. Opredelenie srednei shirotnoi temperatury putem lineinoi transformatsii astronomicheskoi insolyatsii // Optika atmosf. i okeana. 2019. V. 32, N 11. P. 902–907. DOI: 10.15372/AOO20191104.
10. Busygin V.P., Gavrilovich A.B., Rublev A.N. Raspredelenie dlin probega fotonov, vykhodyashchikh cherez atmosferu Zemli v Kosmos // Izv. AN BSSR. Ser. fiz.-mat. nauk. 1991. N 6. P. 80–85.
11. Diagnostika regressionnykh modelei. URL: http://creativity.ipras.ru/texts/AspSem/lobanov_10_03_11.pdf (data obrashcheniya: 10.05.23).
12. Arkhiv Universiteta Vostochnoi Anglii. URL:https://www.metoffice.gov.uk/hadobs/crutem5/data/ CRUTEM.5.0.1.0/download.html (data obrashcheniya: 19.04.2023).
13. Monin A.S. Vvedenie v teoriyu klimata. L.: Gidrometeoizdat, 1982. 248 p.
14. Khromov S.P., Petrosyants M.A. Meteorologiya i klimatologiya: uchebnik. 7-e izd., pererab. i dop. M.: Izd-vo MGU, 2006. 520 p.
15. Solnechnaya radiatsiya i klimat. Solyarnaya teoriya klimata. URL: http://www.solar-climate.com/sc/bd01.htm (data obrashcheniya: 11.05.2023).
16. Giorgini J.D., Yeomans D.K., Chamberlin A.B., Chodas P.W., Jacobson R.A., Keesey M.S., Lieske J.H., Ostro S.J., Standish E.M., Wimberly R.N. JPL`s on-line solar system data service // Bull. Am. Astron. Soc. 1996. V. 28, N 3. P. 1158.
17. Fedorov V.M. Insolyatsiya Zemli i sovremennye izmeneniya klimata. M.: Fizmatlit, 2018. 232 p.
18. Fedorov V.M. Insolyatsionnaya kontrastnost' i tendentsii izmeneniya sovremennogo klimata // Okruzhayushchaya sreda i energovedenie. 2022. N 3. P. 56–66. DOI: 10.24412/26586703-2022-3-56-66.
19. Kurzaeva L.V. Regressionnyi analiz v elektronnykh tablitsakh // Mezhdunar. zhurn. prikladnykh i fundamental'nykh issled. 2016. N 12-7. P. 1234–1238. URL: https://applied-research.ru/ru/article/view?id=11019 (data obrashcheniya: 14.06.2023).
20. Chung Y.-S. On the observations of yellow sand (dust storms) in Korea // Atmos. Env. Part A. General Top. 1992. V. 26, N 15. P. 2743–2749. DOI: 10.1016/0960-1686(92)90010-I.
21. Tartakovskii V.A., Krutikov V.A., Volkov Yu.V., Chered'ko N.N. Klassifikatsiya klimata putem analiza fazy temperaturnykh ryadov // Optika atmosf. i okeana. 2015. V. 28, N 8. P. 711–717. DOI: 10.15372/AOO20150806.