Vol. 37, issue 05, article # 10

Okulicheva A. A., Ermakova T . S. Polar stratosphere dynamics during early sudden stratospheric warmings. // Optika Atmosfery i Okeana. 2024. V. 37. No. 05. P. 423–430. DOI: 10.15372/AOO20240510 [in Russian].
Copy the reference to clipboard


The influence of early sudden stratospheric warming (SSW) on the stratospheric polar vortex is presented. The definition of SSW and their classifications have been formulated for a long time, but detailed information is not available about the early (in November – the first half of December) SSW. The determination of early SSW was carried out in two ways using the zonal averaged values of temperature and zonal wind component with and without the climatic component. The polar vortex's response to warming is represented by the geopotential height field. The study was conducted using JRA-55 and Merra2 reanalysis data. Also, the variation of surface temperature and surface pressure during the displacement and splitting of the stratospheric polar vortex during the early SSW is presented based on sounding data at stations of the polar region of different continents. It is known that the VSP has a significant impact on the weather in the troposphere, including the dynamics of the upper atmosphere.


sudden stratospheric warming, splitting of the polar vortex, displacement of the polar vortex, dynamics of the stratosphere


1. Woollings T., Charlton-Perez A., Ineson S., Marshall A.G., Masato G. Associations between stratospheric variability and tropospheric blocking // J. Geophys. Res. 2010. V. 115, N D6. P. 1–19.
2. Ambaum M.H.P., Hoskins B.J. The NAO troposphere-stratosphere connection // J. Clim. 2002. V. 15, N 14. P. 1–10.
3. Zorkaltseva O.S., Antokhina O.Yu., Antokhin P.N. Dolgovremennaya izmenchivost' parametrov vnezapnyx stratosfernyx poteplenii po dannym reanaliza ERA5 // Optika atmosf. i okeana. 2023. V. 36, N 3. P. 200–208; Zorkaltseva O.S., Antokhina O.Yu., Antokhin P.N. Long-term variations in parameters of sudden stratospheric warmings according to ERA5 reanalysis data // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 370–378.
4. Tomassini L., Gerbe E.P., Baldwin M.P., Bunzel F., Giorgetta M. The role of stratosphere–troposphere coupling in the occurrence of extreme winter cold spells over northern Europe // J. Adv. Model. Earth. Syst. 2012. V. 4, N M00A03. P. 1–14.
5. Kolstad E., Breiteig T., Scaife A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere // Q. J. R. Meteorol. Soc. 2010. V. 136, N 649. Р. 886–893.
6. Labitzke K. Interannual variability of the winter stratosphere in the 1586 Northern Hemisphere // Mon. Weather Rev. 1977. V. 105, N 6. P. 762–770.
7. Matthias V., Shepherd T.G., Hoffmann P., Rapp. M. The Hiccup: A dynamical coupling process during the autumn transition in the Northern Hemisphere – similarities and differences to sudden stratospheric warmings // Ann. Geophys. 2015. V. 33. P. 199–206.
8. Matthias V., Hoffmann P., Rapp M., Baumgarten G., Composite analysis of the temporal development of waves in the polar MLT region during stratospheric warmings // J. Amos. Sol.-Terr. Phys. 2012. V. 90, N 1. P. 86–96.
9. Didenko K.A., Pogoreltsev A.I., Ermakova T.S., Shved G.M. Nonlinear interactions of stationary planetary waves during February 2016 sudden stratospheric warming // IOP Conf. Ser.: Earth Environ. Sci. 2019. V. 386. P. 012016.
10. Didenko K.A., Koval A.V., Ermakova T.S., Lifar V.D. Interactions of stationary planetar waves during winter 2008–2009 and 2018–2019 sudden stratospheric warmings // Proc. SPIE. 2022. V. 12341, N 1234175. P. 1–12.
11. Zorkaltseva O.S., Vasilyev R.V. Stratospheric influence on the mesosphere–lower thermosphere over mid latitudes in winter observed by a Fabry–Perot interferometer // Ann. Geophys. 2021. V. 39, N 1. P. 267–276.
12. Koval A.V., Chen W., Didenko K.А., Ermakova T.S., Gavrilov N.M., Pogoreltsev A.I., Toptunova O.N., Ke W., Yarusova A.N., Zarubin A.S. Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events // Ann. Geophys. 2021. V. 39. P. 357–368.
13. Onogi K., Tsutsui J., Koide H., Sakamoto M., Kobayashi S., Hatsushika H., Matsumoto T., Yamazaki N., Kamahor H., Takahashi K., Kadokura S., Wada K., Kato K., Oyama R., Ose T., Mannoji N., Taira R. The JRA-25 reanalysis // J. Meteor. Soc. Japan. 2007. V. 85, N 3. P. 369–432.
14. Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrspective Analysis for Research and Applications, Version 2 (MERRA-2) // J. Clim. 2017. V. 30, N 14. P. 5419–5454.
15. Arhiv dannyh radiozondirovaniya atmosfery universiteta Vaiominga. URL: http://weather.uwyo.edu/upperair/sounding.html (дата обращения: 16.02.2023).
16. Baldwin M.P., Ayarzagüena B., Birner T., Butchart N., Butler A.H., Charlton-Perez A.J., Domeisen D.I.V., Garfinkel C.I., Garny H., Gerber E.P., Hegglin M.I., Langematz U., Pedatella N.M. Sudden stratospheric warmings // Rev. Geophys. 2021. V. 59, N 1. P. 1–37.
17. Huang J., Hitchcock P., Maycock A.C., McKenna C.M., Tian W. Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions // Commun. Earth Environ. 2012. V. 2, N 147. P. 2662–4435.