Vol. 37, issue 04, article # 10

Yastremskii A. G., Panchenko Yu. N., Puchikin A. V., Yampolskaya S. A. Numerical model of an electric-discharge KrCl laser. // Optika Atmosfery i Okeana. 2024. V. 37. No. 04. P. 330–334. DOI: 10.15372/AOO20240410 [in Russian].
Copy the reference to clipboard

Abstract:

The paper presents the results of numerical simulation of one of the least studied excimer lasers, a KrCl molecule laser. The simulation was carried out in a 1D approximation, where laser radiation were calculated along the optical axis between plane-parallel mirrors, and the system of kinetic equations and the Boltzmann equation were solved in each transverse layer of the active medium. The theoretical data well agree with the results for the EL series KrCl laser (HCEI SB RAS). The effect of the excitation discharge width on the energy characteristics of the laser is numerically shown. The suggested model and the obtained estimates can be used as tools for optimizing initial parameters when developing more powerful laser systems.

Keywords:

electric discharge KrCl laser, numerical simulation, electron energy distribution function, Boltzmann kinetic equation, optimization

References:

1. McKee T.J., James D.J., Nip W.S., Weeks R.W., Willis C. Lifetime extension of XeCl and KrCl lasers with additives // Appl. Phys. Lett. 1980. V. 36. P. 943–945.
2. Razhev A.M., Zhupikov A.A. Issledovanie vliyaniya udel'noi moshchnosti nakachki na energiyu izlucheniya i KPD eksimernogo gazorazryadnogo KrCl-lazera (223 nm) // Kvant. elektron. 2008. V. 38, N 11. P. 1005–1008.
3. Razhev A.M., Zhupikov A.A., Kargapol'tsev E.S. Eksimernyi KrCl-lazer (l = 223 nm) na smesi He–Kr–HCl // Kvant. elektron. 2004. V. 34. P. 95–98.
4. Panchenko A.N., Tarasenko V.F. Effektivnyi elektrorazryadnyi KrCl-lazer «Foton» // Kvant. elektron. 1999. V. 28. P. 136–138.
5. Armandillo E., Luches A., Nassisi V., Perrone M.R. Improved lasing performance of KrCl excimer laser // Appl. Phys. Lett. 1983. V. 42. P. 860–861.
6. Panchenko A.N., Tarasenko V.F. Maximum performance of discharge-pumped exciplex laser at l = 222 nm // IEEE J. Quantum Electron. 1995. V. 31, N 7. P. 1231–1236.
7. Rockwood S. Elastic and inelastic cross sections for electron-Hg scattering from Hg transport data // Phys. Rev. A. 1973. V. 8. P. 2348–2358.
8. Register D., Trajmar S., Steffensen G. Electron-impact-excitation cross sections for electronic levels in neon for incident energies between 25 and 100 eV// Phys. Rev. A. 1984. V. 29. P. 1793–1811.
9. Krishnakumar E., Srivastava S. Ionization cross sections of rare-gas atoms by electron impact // J. Phys. B: At. Mol. Opt. Phys. 1988. V. 21. P. 1055–1062.
10. Boffard J., Keeler M., Piech G., Anderson L., Lin C. Measurement of electron-impact excitation cross sections out of the neon 3P2 metastable level // Phys. Rev. A. 2001. V. 64. P. 032708.
11. Ton-That D., Flannery M. Cross sections for ionization of metastable rare-gas atoms (Ne*, Ar*, Kr*, Xe*) and of metastable N2*, CO* molecules by electron impact // Phys. Rev. A. 1977. V. 15. P. 517–526.
12. Chilton J., Stewart Jr.M., Lin C. Electron-impact excitation cross sections of neon // Phys. Rev. A. 2000. V. 61. P. 052708.
13. Rejoub R., Lindsay B., Stebbings R. Determination of the absolute partial and total cross sections for electron-impact ionization of the rare gases // Phys. Rev. A. 2002. V. 65. P. 042713.
14. Hyman H. Electron-impact excitation of metastable argon and krypton // Phys. Rev. A. 1978. V. 18. P. 441–447.
15. Hyman H. Electron-impact ionization cross sections for excited states of the rare gases (Ne, Ar, Kr, Xe), cadmium, and mercury // Phys. Rev. A. 1979. V. 20. P. 855–859.
16. Knoth G., Radle M., Gote M., Ehrardt H., Jung K. Near-threshold electron impact rovibrational excitation of HCl and HF // J. Phys. B: At. Mol. Opt. Phys. 1989. V. 22. P. 299–305.
17. Frost L., Phelps A. Momentum-transfer cross sections for slow electrons in He, Ar, Kr, and Xe from transport coefficients // Phys. Rev. A. 1964. V. 136. P. 1538.
18. Lowke J., Phelps A., Irwin B.J. Predicted electron transport coefficient of CO2–N2–He laser mixtures // Appl. Phys. 1973. V. 44. P. 4664 –4671.
19. Rapp D., Englander-Golden P.J. Total cross section from ionization and attachment in gases by electron impact. I. Positive ionization // Chem. Phys. 1965. V. 43. P. 1464–1479.
20. Fletcher C. Computational Galerkin Methods. New-York: Springer, 1984.
21. Bychkov Yu., Yampolskaya S., Yastremsky A. Two-dimensional simulation of the development of an inhomogeneous volume discharge in a Ne/Xe/HCL gas mixture // Plasm. Phys. Rep. 2013. V. 39. P. 374–386.
22. Boichenko A.M., Yakovlenko S.I. Simulation of KrCl (222 nm) and XeCl (308 nm) excimer lamps with Kr/HCl(Cl2) and Xe/HCl(C2) binary and Ne/Kr/Cl2 ternary mixtures excited by glow discharge // Laser Physics. 2004. V. 14, N 1. P. 1–14.
23. Chua L., Lin P.-M. Computer Aided Analysis of Electronic Circuits, Algorithms and Computational Techniques. Englewood Cliffs. NJ: Prentice-Hall, 1975.
24. Gear C. Numerical solution of ordinary differential equations: Is the anything left to do // SIAM Rev. 1981. V. 23. P. 10–24.