Vol. 37, issue 04, article # 1

Panchenko Yu. N., Puchikin A. V., Andreev M. V., Konovalov I. N., Gorlov E. V. Tunable alexandrite laser for lidar systems. // Optika Atmosfery i Okeana. 2024. V. 37. No. 04. P. 275–278. DOI: 10.15372/AOO20240401 [in Russian].
Copy the reference to clipboard

Abstract:

The development of laser technologies leads to high requirements for lasers being developed which generate narrow-band radiation with different wavelengths. In view of this, the importance of wavelength-tunable diode and vibronic lasers with broadband amplification circuits increases. The possibility of generating highly coherent radiation in a solid-state alexandrite laser using an original composite resonator which includes an additional external dispersive resonator has been demonstrated. The results of experimental studies of conditions for the generation of narrow-band (less than 20 pm) radiation in such a resonator with the possibility of smooth tuning of the lasing wavelength in the spectral range 740–780 nm are presented. Narrow-band lasing in an alexandrite laser with a radiation energy of 30 mJ and a pulse duration of 35 ns was demonstrated. The created compact narrow-band alexandrite laser can be an effective alternative to parametric oscillators (OPO) and Ti:Sapphire lasers in lidar systems operating in the spectral range 700–850 nm.

Keywords:

alexandrite laser, dispersive resonator, coherent radiation, short pulse

References:

1. Kiefer J., Zhou Bo, Zetterberg J., Li Z., Alden M. Laser-induced fluorescence detection of hot molecular oxygen in flames using an alexandrite laser // Appl. Spectrosс. 2014. V. 68, N 11. P. 1266–1273.
2. Wulfmeyer V., Bosenberg J., Lehmann S., Senff C. Injection-seeded alexandrite ring laser: Performance and application in a water-vapor differential absorption lidar // Opt. Lett. 1995. V. 20, N 6. P. 638–640.
3. Walling J.C., Peterson O.G., Jenssen H.P., Morris R.C., O’dell E.W. Tunable alexandrite lasers // IEEE J. Quant. Electron. 1980. V. 16, N 12. P. 1302–1315.
4. Imai Sh., Yamada T., Fujimori Y., Ishikawa K. Third-harmonic generation of an alexandrite laser in b–BaB2O4 // Appl. Phys. Lett. 1989. V. 54, N 13. P. 1206–1208.
5. Antsiferov V.V., Ivanov E.V. Moshchnyi odnochastotnyi lazer na aleksandrite s passivnoi modulyatsiei dobrotnosti zatvorami na kristallakh F3:LiF, s plavnoi perestroikoi i stabilizatsiei dliny volny generatsii. Novosibirsk: IYAF SO RAN im. G.I. Budkera, 1999. P. 99–40.
6. Tyryshkin I.S., Ivanov N.A., Khulugurov V.M. Uzkopolosnyi perestraivaemyi lazer na aleksandrite s passivnoi modulyatsiei dobrotnosti // Kvant. elektron. 1998. V. 25, N 6. P. 505–506.
7. Opticheskii sostavnoi rezonator dlya tverdotel'nykh i diodnykh lazerov: Pat. 217510 U1. Russia. MPK H01S 3/082. Panchenko Yu.N., Puchikin A.V., Andreev M.V.; FGBUN ISE SO RAN. N 2022133091; Zayavl. 15.12.2022; Opubl. 04.04.2023. Byul. N 10.
8. Anokhov S.P., Marusii T.Ya., Soskin M.S. Perestraivaemye lazery. M.: Radio i svyaz', 1982. 360 p.