Vol. 37, issue 03, article # 9

Marakasov D. A., Afanas'ev A. L., Gordeev E. V. Estimation of parameters of the inertial interval of turbulent temperature spectrum from time series of data from sonic weather stations. // Optika Atmosfery i Okeana. 2024. V. 37. No. 03. P. 254–261. DOI: 10.15372/AOO20240309 [in Russian].
Copy the reference to clipboard


The basis for estimating turbulence characteristics using the primary output data of sonic weather stations is currently the classical Kolmogorov–Obukhov model of homogeneous and isotropic turbulence with a power-law structure function with an exponent of 2/3. In practice, such conditions are not always implemented in the atmosphere. In this article, to describe the non-Kolmogorov turbulence, an approach based on the use of a generalized power model with an exponent, a structural characteristic, and an outer scale estimated directly from the measured time series of instantaneous values of recorded meteorological parameters is suggested. The criteria of applicability of the model for estimating characteristics of real atmospheric turbulence are derived.


non-Kolmogorov turbulence, energy spectrum, structure constant, outer scale, sonic weather stations


1. Tihomirov A.A. Ul'trazvukovye anemometry i termometry dlya izmereniya pul'satsii skorosti i temperatury vozdushnyh potokov. Obzor // Optika atmosf. i okeana. 2010. V. 23, N 7. P. 585–600.
2. Azbukin A.A., Bogushevich A.Ya., Il'ichevskii V.S. Korol'kov V.A., Tihomirov A.A., Shchelevoi V.D. Avtomatizirovannyi ul'trazvukovoi meteorologicheskii kompleks AMK-3 // Meteorol. i gidrol. 2006. N 11. P. 89–98.
3. Patrushev G.Ya., Rostov A.P., Ivanov A.P. Avtomatizirovannyi ul'trazvukovoi anemometr-termometr dlya izmereniya turbulentnyh harakteristik v prizemnom sloe atmosfery // Optika atmosf. i okeana. 1994. V. 7, N 11–12. P. 1636–1638.
4. Afanas'ev A.L., Banah V.A., Rostov A.P. Prostranstvenno-vremennaya statistika melkomasshtabnoi turbulentnosti prizemnogo sloya atmosfery po rezul'tatam izmerenii s pomoshch'yu massiva ul'trazvukovyh datchikov // Optika atmosf. i okeana. 1999. V. 12, N 8. P. 701–707.
5. Zhou X., Gao T., Takle E.S., Zhen X., Suyker A.E., Awada T., Okalebo J., Zhu J. Air temperature equation derived from sonic temperature and water vapor mixing ratio for turbulent airflow sampled through closed-path eddy-covariance flux systems // Atmos. Meas. Tech. 2022. V. 15. P. 95–115.
6. Mauder M., Zeeman M.J. Field intercomparison of prevailing sonic anemometers // Atmos. Meas. Tech. 2018. V. 11. P. 249–263.
7. Vinnichenko N.K., Pinus N.Z., Shmeter S.M., Shur G.N. Turbulentnost' v svobodnoi atmosfere. L.: Gidrometeoizdat, 1976. 286 p.
8. Tatarskii V.I. Rasprostranenie voln v turbulentnoi atmosfere. M.: Nauka, 1967. 548 p.
9. Glegg S., Devenport W. Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis, and Measurement. Oxford: Academic Press, 2017. 537 p.
10. Zilitinkevich S., Kadantsev E., Repina I., Mortikov E., Glazunov A. Order out of chaos: Shifting paradigm of convective turbulence // J. Atmos. Sci. 2021. V. 78. P. 3925–3932.
11. Banerjee T., Katul G.G., Salesky S.T., Chamecki M. Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer // Q. J. R. Meteorol. Soc. 2014. V. 141, N 690. P. 1699–1711.
12. Nosov V.V., Kovadlo P.G., Lukin V.P., Torgaev A.V. Atmosfernaya kogerentnaya turbulentnost' // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 753–759; Nosov V.V., Kovadlo P.G., Lukin V.P., Torgaev A.V. Atmospheric coherent turbulence // Atmos. Ocean. Opt. 2013. V. 26, N 3. P. 201–206.
13. Nosov V.V., Lukin V.P., Kovadlo P.G., Nosov E.V., Torgaev A.V. Opticheskie svoistva turbulentnosti v gornom pogranichnom sloe atmosfery. Novosibirsk: Izd-vo SO RAN, 2016. 153 p.
14. Li Y., Zhu W., Wu X., Rao R. Equivalent refractive-index structure constant of non-Kolmogorov turbulence // Opt. Express. 2015. V. 23, N 18. P. 23004–23012.
15. Baykal Y., Gerçekcioğlu H. Equivalence of structure constants in non-Kolmogorov and Kolmogorov spectra // Opt. Lett. 2011. V. 36, N 23. P. 4554–4556.
16. Chao Z. A novel idea: Calculating anisotropic turbulence only by Kolmogorov structure constant Cn2and power law a // Results Phys. 2020. V. 19, N 2. P. 103483-1–103483-4.
17. Barrett E.W., Suomi V.E. Preliminary report on temperature measurement by sonic means // J. Atmos. Sci. 1949. V. 6. P. 273–276.
18. Kaimal J.C., Gaynor J.E. Another look at sonic thermometry // Bound. Lay. Meteorol. 1991. V. 56. P. 410–418.
19. Loescher H.W., Ocheltree T., Tanner B., Swiatek E., Dano B., Wong J., Zimmerman G., Campbell J., Stock C., Jacobsen L., Shiga Y., Kollasi J., Liburdy J. Law B.E. Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers // Agric. For. Meteorol. 2005. V. 133. P. 119–139.
20. Isimaru A. Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnyh sredah. T. 2. Mnogokratnoe rasseyanie, turbulentnost', sherohovatye poverhnosti i distantsionnoe zondirovanie. M.: Mir, 1981. 317 p.
21. Bendat Dzh., Pirsol A. Prikladnoi analiz sluchainyh dannyh. M.: Mir, 1989. 540 p.