Vol. 37, issue 03, article # 3
Copy the reference to clipboard
Abstract:
Absorption due to (СО2)2 dimers is estimated as the difference between the experimental CO2 absorption and that calculated on the basis of the asymptotic line wing theory. This procedure successfulness depends on the quantity and quality of the given experimental data. Available absorption data on the absorption within the 4.3 and 15 mm СО2 bands do not satisfy in full these requirements. However the qualitative agreement of the dimer absorption obtained with the measured and calculated positions of the (СО2)2 bands allows one to say about the procedure as about additional way of estimate absorption of the stable dimers of the H2O and CO2 molecules important for the atmospheric IR absorption.
Keywords:
IR spectrum, carbon dioxide, dimers (СО2)2, spectral line wings
References:
1. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noi linii i mezhmolekulyarnoe vzaimodeistvie. Novosibirsk: Nauka, 1986. 216 p.
2. Tvorogov S.D., Rodimova O.B. Stolknovitel'nyi kontur spektral'nykh linii. Tomsk: Izd-vo IOA SO RAN, 2013. 196 p.
3. Bogdanova Yu.V., Rodimova O.B. Sootnoshenie mezhdu pogloshcheniem monomerami i dimerami vodyanogo para v predelakh vrashchatel'noi polosy Н2О // Optika atmosf. i okeana. 2018. V. 31, N 5. P. 341–348; Bogdanova Yu.V., Rodimova O.B. Ratio between monomer and dimer absorption in water vapor within the H2O rotational band // Atmos. Ocean. Opt. 2018. V. 31, N 5. P. 457–465.
4. Odintsova T.A., Tretyakov M.Yu., Pirali O., Roy P. Water vapor continuum in the range of rotational spectrum of H2O molecule: New experimental data and their comparative analysis // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 187. P. 116–123.
5. Rodimova O.B. Pogloshchenie dimerami vody v dlinnovolnovom kryle vrashchatel'noi polosy Н2О // Optika atmosf. i okeana. 2022. V. 35, N 11. P. 902–905; Rodimova O.B. Dimer absorption in the longwave wing of the H2O rotational band // Atmos. Ocean. Opt. 2023. V. 36, N 2. P. 100–104.
6. Rodimova O.B. Pogloshchenie dimerami vody IK-polosakh vodyanogo para pri razlichnykh temperaturakh // Optika atmosf. i okeana. 2023. V. 36, N 2. P. 86–92; Rodimova O.B. Absorption by water dimers in water vapor IR spectra at different temperatures // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 293–299.
7. Simonova A.A., Ptashnik I.V., Elsey J., McPheat R.A., Shine K.P., Smith K.M. Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277, N 107957. P. 1–17.
8. Bernstein L.S., Robertson D.C., Conant J.A., Sandford B.P. Measured and predicted atmospheric transmission in the 4.0–5.3-gm region, and the contribution of continuum absorption by CO2 and N2 // Appl. Opt. 1979. V. 18, N 14. P. 2454–2461.
9. Klimeshina T.E., Petrova T.M., Rodimova O.B., Solodov A.A., Solodov A.M. Pogloshchenie СО2 za kantami polos v oblasti 8000 sm -1 // Optika atmosf. i okeana. 2013. V. 26, N 11. P. 925–931.
10. Schriver A., Schriver-Mazzuoli L., Vigasin A.A. Matrix isolation spectra of the carbon dioxide monomer and dimer revisited // Vib. Spectrosc. 2000. V. 2. P. 83–94.
11. Castano J.A.G., Fantoni A., Romano R.M. Matrix-isolation FTIR study of carbon dioxide: Reinvestigation of the CO2 dimer and CO2–N2 complex // J. Mol. Struct. 2008. V. 881. P. 68–75.
12. Stull R.V., Wyatt P.J., Plass G.N. The infrared transmittance of carbon dioxide // Appl. Opt. 1964. V. 3, iss. 2. P. 243–254.
13. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Koeffitsient pogloshcheniya v mikrooknakh polos uglekislogo gaza // Izv. vuzov. Fizika. 1982. Iss. 5. P. 54–58.
14. Burch D.E. Investigation of the absorption of infrared radiation by atmospheric gases // Semi-Annual Technical Report. Air Force Cambridge Research Lab., Publ. U-4784 under contract № F 19628-69-C-0263 (31 January 1970).
15. Rodimova O.B. Koeffitsient pogloshcheniya v kryle 1–0 polosy CO pri ushirenii geliem // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 663–667; Rodimova O.B. Absorption coefficient in the 1–0 CO band wing broadened by helium // Atmos. Ocean. Opt. 2021. V. 34, N 5. P. 390–394.
16. Tran H., Boulet C., Stefani S., Snels M., Piccioni G. Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1. I – Central and wing regions of the allowed vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, iss. 6. P. 925–936.
17. Vigasin A.A., Huisken F., Pavlyuchko A.I., Ramonat L., Tarakanova E.G. Identification of the (CO2)2 dimer vibrations in the n1, 2n2 region: Anharmonic variational calculations // J. Mol. Spectrosc. 2001. V. 209, iss. 1. P. 81–87.