Vol. 37, issue 03, article # 10

Kalchikhin V. V., Kobzev A. A., Tikhomirov A. A. Determination of the energy characteristics of rainfall using the optical precipitation gauge. // Optika Atmosfery i Okeana. 2024. V. 37. No. 03. P. 262–269. DOI: 10.15372/AOO20240310 [in Russian].
Copy the reference to clipboard


A brief overview of tasks that require information about the energy characteristics of rains, as well as methods for obtaining this information, is given. A technique is described for determining the kinetic energy transferred by hydrometeors based on the microstructural characteristics of precipitation obtained using the optical precipitation gauge OPTIOS. The methodology usage is illustrated with measurement data of the heavy rainfall that fell in Tomsk on July 22, 2023. The influence of various microstructural parameters on the amount of kinetic energy brought by raindrops to the underlying surface is analyzed. The comparison is made with the values obtained by simplified methods. It is concluded that the capabilities of the optical precipitation gauge allow it to be successfully used in solving tasks that require an accurate assessment of the energy characteristics of rainfall.


precipitation, rainfall intensity, rainfall kinetic energy, rain gage, disdrometer, soil erosion


1. Jose J., Gires A., Tchiguirinskaia I., Roustan Y., Schertzer D. Scale invariant relationship between rainfall kinetic energy and intensity in Paris region: An evaluation using universal multifractal framework // J. Hydrol. 2022. V. 609, N 6. 127715. DOI: 10.1016/j.jhydrol.2022.127715.
2. Keegan M.H., Nash D.H., Stack M.M. On erosion issues associated with the leading edge of wind turbine blades // J. Phys. D: Appl. Phys. 2013. V. 46, N 38. P. 383001. DOI: 10.1088/0022-3727/46/38/383001.
3. Herring R., Dyer K., Martin F., Ward C. The increasing importance of leading edge erosion and a review of existing protection solutions // Renew. Sustain. Energy Rev. 2019. V. 115, N 11. P. 109382. DOI: 10.1016/j.rser.2019.109382.
4. Chang J.-M., Chena H., Jou B.J.-D., Tsou N.-Ch., Lin G.-W. Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan // Eng. Geol. 2017. V. 231. P. 81–87. DOI: 10.1016/j.enggeo.2017.10.006.
5. Ferro V., Carollo F.G., Serio M.A. Establishing a threshold for rainfall-induced landslides by a kinetic energy–duration relationship // Hydrol. Process. 2020. V. 34, N 16. P. 3571–3581. DOI: 10.1002/hyp.13821.
6. Shchepashchenko G.L. Livnevaya eroziya pochv i metody bor'by s nei. M.: Pochvennyi institut im. V.V. Dokuchaeva, 1991. 178 p.
7. Shcheglov D.I., Gorbunova N.S. Eroziya i okhrana pochv: ucheb.-metod. posobie dlya vuzov. Voronezh: Izd.-poligraf. tsentr Voronezh. gos. un-ta, 2011. 34 p.
8. Angulo-Martinez M., Barros A. Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the Southern Appalachian Mountains // Geomorphology. 2015. V. 228. P. 28–40. DOI: 10.1016/j.geomorph.2014.07.036.
9. Yin S., Nearing M.A., Borrelli P., Xue X. Rainfall erosivity: An overview of methodologies and applications // Vadose Zone J. 2017. V. 16, N 12. P. 1–16. DOI: 10.2136/vzj2017.06.0131.
10. Angel J.R., Palecki M.A., Hollinger S.E. Storm precipitation in the United States. Part II: Soil erosion characteristics // J. Appl. Meteorol. 2005. V. 44, N 6. P. 947–959. DOI: 10.1175/JAM2242.1.
11. Luo L., Wang L., Huo T., Chen M., Ma J., Li S., Wu J. Raindrop size distribution and rain characteristics of the 2017 Great Hunan Flood observed with a Parsivel2 disdrometer
12. Torres D.S., Salles C., Creutin J.D., Delrieu G. Quantification of soil detachment by raindrop impact: Performance of classical formulae of kinetic energy in Mediterranean storms // Proc. of the Oslo Symposium ”Erosion and Sediment Transport Monitoring Programmes in River Basins”, Oslo, August, 1992. IAHS Publ. 1992. N 210. P. 115–124.
13. Lim Y.S., Kim J.K., Kim J.W., Park B.I., Kim M.S. Analysis of the relationship between the kinetic energy and intensity of rainfall in Daejeon, Korea // Quatern. Int. 2015. V. 384. P. 107–117. DOI: 10.1016/j.quaint. 2015.03.021.
14. Kinnell P.I.A. Raindrop-impact-induced erosion processes and prediction: A review // Hydrol. Process. 2005. V. 19, N 14. P. 2815–2844. DOI: 10.1002/hyp.5788.
15. Johannsen L.L., Zambon N., Strauss P., Dostal T., Neumann M., Zumr D., Cochrane T.A., Bloschl G., Klik A. Comparison of three types of laser optical disdrometers under natural rainfall conditions // Hydrolog. Sci. J. 2020. V. 65, N 4. P. 524–535. DOI: 10.1080/02626667.2019.1709641.
16. Catari G., Latron J., Gallart F. Assessing the sources of uncertainty associated with the calculation of rainfall kinetic energy and erosivity – application to the Upper Llobregat Basin, NE Spain // Hydrol. Earth Syst. Sci. 2011. V. 15, N 3. P. 679–688. DOI: 10.5194/ hess-15-679-2011.
17. Meshesha D.T., Tsunekawa A., Tsubo M., Haregeweyn N., Adgo E. Drop size distribution and kinetic energy load of rainfall events in the highlands of the Central Rift Valley, Ethiopia // Hydrol. Sci. J. 2014. V. 59, N 12. P. 2203–2215. DOI: 10.1080/02626667.2013.865030.
18. Nyssen J., Vandenreyken H., Poesen J., Moeyersons J., Deckers J., Haile M., Salles C., Govers G. Rainfall erosivity and variability in the Northern Ethiopian Highlands // J. Hydrol. 2005. V. 311, N 1–4. P. 172–187. DOI: 10.1016/j.jhydrol.2004.12.016.
19. Jayawardena A.W., Rezaur R.B. Drop size distribution and kinetic energy load of rainstorms in Hong Kong // Hydrol. Process. 2000. V. 14, N 6. P. 1069–1082.
20. Assouline S. Drop size distributions and kinetic energy rates in variable intensity rainfall // Water Resour. Res. 2009. V. 45, N 11. P. W11501. DOI: 10.1029/2009WR007927.
21. Ramon R., Minella J.P.G., Merten G.H., Barros C.A.P., Canale T. Kinetic energy estimation by rainfall intensity and its usefulness in predicting hydrosedimentological variables in a small rural catchment in southern Brazil // Catena. 2017. V. 148, part 2. P. 176–184. DOI: 10.1016/j.catena.2016.07.015.
22. Fornis R.L., Vermeulen H.R., Nieuwenhuis J.D. Kinetic energy–rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies // J. Hydrol. 2005. V. 300, N 1–4. P. 20–32. DOI: 10.1016/j.jhydrol.2004.04.027.
23. Mikos M., Jost D., Petkovsek G. Rainfall and runoff erosivity in the alpine climate of north Slovenia: A comparison of different estimation methods // Hydrolog. Sci. J. 2006. V. 51, N 1. P. 115–126. DOI: 10.1623/hysj.51.1.115.
24. Lobo G.P., Bonilla C.A. Sensitivity analysis of kinetic energy-intensity relationships and maximum rainfall intensities on rainfall erosivity using a long-term precipitation dataset // J. Hydrol. 2015. V. 527, N 8. P. 788–793. DOI: 0.1016/j.jhydrol.2015.05.045.
25. Sanchez-Moreno J.F., Mannaerts C.M., Jetten V., Loffler-Mang M. Rainfall kinetic energy–intensity and rainfall momentum–intensity relationships for Cape Verde // J. Hydrol. 2012. V. 454–455. P. 131–140. DOI: 10.1016/j.jhydrol.2012.06.007.
26. Salles Ch., Poesen J., Torres D.S. Kinetic energy of rain and its functional relationship with intensity // J. Hydrol. 2002 V. 257, N 1–4. P. 256–270. DOI: 10.1016/S0022-1694(01)00555-8.
27. Wischmeier W.H., Smith D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. Handbook 537. US Department of Agriculture, Washington DC, 1978. 60 p.
28. Van Dijk A., Bruijnzeel L.A., Rosewell C.J. Rainfall intensity-kinetic energy relationships: A critical literature appraisal // J. Hydrol. 2002. V. 261, N 1–4. P. 1–23. DOI: 10.1016/S0022-1694(02)00020-3.
29. Komarova L.F., Kormina L.A. Inzhenernye metody zashchity okruzhayushchei sredy. Tekhnika zashchity atmosfery i gidrosfery ot promyshlennykh zagryaznenii: ucheb. posobie. Barnaul: Altai, 2000. 395 p.
30. Carollo F.G., Serio M.A., Ferro V., Cerda A. Characterizing rainfall erosivity by kinetic power – Median volume diameter relationship // Catena. 2018. V. 165. P. 12–21. DOI: 10.1016/j.catena.2018.01.024.
31. Angulo-Martinez M., Begueria S., Latorre B., Fernandez-Raga M. Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers // Hydrol. Earth Syst. Sc. 2018. V. 22, N 5. P. 2811–2837. DOI: 10.5194/hess-22-2811-2018.
32. Kruger A., Krajewski W.F. Two-dimensional video disdrometer: A description // J. Atmos. Ocean. Tech. 2002. V. 19, N 5. P. 602–617. DOI: 10.1175/1520-0426(2002)019<0602:TDVDAD >2.0.CO;2.
33. Angulo-Martinez M., Begueria S., Kysely J. Use of disdrometer data to evaluate the relation-ship of rainfall kinetic energy and intensity (KE-I) // Sci. Total Environ. 2016. V. 568. P. 83–94. DOI: 10.1016/j.scitotenv.2016.05.223.
34. Kal’chikhin V.V., Kobzev A.A., Korol’kov V.A., Tikhomirov A.A. Determination of the rate of fall of rain drops in measurements of their parameters by an optical rain gauge // Meas. Tech. 2017. V. 59, N 11. P. 1175–1180. DOI: 10.1007/s11018-017-1111-9.
35. Kal’chikhin V.V., Kobzev A.A., Tikhomirov A.A., Filatov D.E. Izmerenie kolichestva osadkov s pomoshch'yu opticheskogo osadkomera v techenie letnego perioda 2020 year // Optika atmosf. i okeana. 2021. V. 34, N 2. P. 152–155; Kal’chikhin V.V., Kobzev A.A., Tikhomirov A.A., Filatov D.E. Rainfall measurements during summer 2020 with the optical precipitation gage // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 278–281. DOI: 10.1134/ S1024856021030052.