Vol. 37, issue 02, article # 9

Lukyanov A. N., Yushkov V. A., Vyazankin A. S. Trajectory analysis of variations in ozone-active components inside the Arctic stratospheric vortex using M2-SCREAM reanalysis data. // Optika Atmosfery i Okeana. 2024. V. 37. No. 02. P. 145–148. DOI: 10.15372/AOO20240208 [in Russian].
Copy the reference to clipboard


The paper is devoted to thermodynamic and chemical processes inside the stratospheric polar vortex, leading to a decrease in ozone content in this region. The winter-spring seasons in the Arctic with the strongest stratospheric vortices and, as a result, the greatest ozone losses are considered. To study the ozone variations and ozone-active components averaged over the vortex, we used an ensemble of backward trajectories inside the vortex and M2-SCREAM stratospheric reanalysis data, which includes some chemical components that affect the ozone concentration. It is shown that the record ozone depletion in the winter of 2020 was due to not only the long-lived stable stratospheric polar vortex, but also the earlier transformation of chlorine reservoirs into the active form and stronger denitrification and dehydration of air masses. The proposed approach can be used to analyze processes in the polar stratosphere over the past winters, as well as to validate chemical-climate models.


stratospheric polar vortex, ozone, denitrification, trajectory model



1. Zhang J., Tian W., Xie F., Chipperfield M.P., Feng W., Son S.-W., Abraham N.L., Archibald A.T., Bekki S., Butchart N., Deushi M., Dhomse S., Han Yu., Jöckel P., Kinnison Douglas, Kirner O., Michou M., Morgenstern O., O'Connor F.M., Pitari G., Plummer D.A., Revell L.E., Rozanov E., Visioni D., Wang W., Zeng G. Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift // Nat. Commun. 2018. V. 9. P. 206. DOI: 10.1038/s41467-017-02565-2.
2. Wohltmann I., von der Gathen P., Lehmann R., Deckelmann H., Manney G.L., Davies J., Tarasick D., Jepsen N., Kivi R., Lyall N., Rex M. Chemical evolution of the exceptional Arctic stratospheric winter 2019/2020 compared to previous Arctic and Antarctic winters // J. Geophys. Res.: Atmos. 2021. V. 126. P. e2020JD034356. DOI: 10.1029/2020JD034356.
3. Manney G.L., Livesey N.J., Santee M.L., Froidevaux L., Lambert A., Lawrence Z.D., Millan L., Neu J.L., Read W.G., Schwartz M.J., Fuller R. Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters // Geophys. Res. Lett. 2020. V. 47. P. e2020GL089063. DOI: 10.1029/2020GL089063.
4. Wohltmann I., von der Gathen P., Lehmann R., Maturilli M., Deckelmann H., Manney G.L., Davies J., Tarasick D., Jepsen N., Kivi R., Lyall N., Rex M. Near-complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020 // Geophys. Res. Lett. 2020. V. 47. P. e2020GL089547. DOI: 10.1029/2020GL089547.
5. Dameris M., Loyola D.G., Nützel M., Coldewey-Egbers M., Lerot C., Romahn F., van Roozendael M. Record low ozone values over the Arctic in boreal spring 2020 // Atmos. Chem. Phys. 2021. V. 21. P. 617–633. DOI: 10.5194/acp-21-617-2021.
6. Inness A., Chabrillat S., Flemming J., Huijnen V., Langenrock B., Nicolas J., Polichtchouk I., Razinger M. Exceptionally low Arctic stratospheric ozone in spring 2020 as seen in the CAMS reanalysis // J. Geophys. Res.: Atmos. 2020. V. 125. P. e2020JD033563. DOI: 10.1029/ 2020JD033563.
7. Kuttippurath J., Feng W., Müller R., Kumar P., Raj S., Gopikrishnan G.P., Roy R. Exceptional loss in ozone in the Arctic winter/spring of 2019/2020 // Atmos. Chem. Phys. 2021. V. 21. P. 14019–14037. DOI: 10.5194/acp-21-14019-2021.
8. Manney G.L., Millán L.F., Santee M.L., Wargan K., Lambert A., Neu J.L., Werner F., Lawrence Z.D., Schwartz M.J., Livesey N.J., Read W.G. Signatures of anomalous transport in the 2019/2020 Arctic stratospheric polar vortex // J. Geophys. Res.: Atmos. 2022. V. 127. P. 2022JD037407. DOI: 10.1029/2022JD037407.
9. Luk'yanov A.N., Vargin P.N., Yushkov V.A. Issledovanie s pomoshch'yu lagranzhevyh metodov anomal'no ustojchivogo arkticheskogo stratosfernogo vihrya, nablyudavshegosya zimoi 2019–2020 years // Izv. RAN. Fizika atmosf. i okeana. 2021. V. 57, N 3. P. 278–285.
10. Wargan K., Weir B., Manney G.L., Cohn S.E., Knowland K.E., Wales P.A., Livesey N.J. M2-SCREAM: A stratospheric composition reanalysis of Aura MLS data with MERRA-2 transport // Earth Space Sci. 2023. V. 10. P. e2022EA002632. DOI: 10.1029/2022EA0026.
11. Lukyanov A., Nakane H., Yushkov V. Lagrangian estimation of ozone loss in the core and edge region of the Arctic polar vortex 1995/1995: Model results and observations // J. Atmos. Chem. 2003. V. 44, N 2. P. 191–210.
12. Luk'yanov A.N., Gan'shin A.V., Yushkov V.A., Vyazankin A.S. Traektornoe modelirovanie srednei atmosfery // Meteorol. i gidrol. 2021. N 9. P. 95–104.
13. Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrospective Analysis for research and applications, version 2 (MERRA-2) // J. Clim. 2017. V. 30, N 14. P. 5419–5454. DOI: 10.1175/JCLI-D-16-0758.1.
14. Wargan K., Weir B., Manney G.L., Cohn S.E., Livesey N.J. The anomalous 2019 Antarctic ozone hole in the GEOS Constituent Data Assimilation System with MLS observations // J. Geophys. Res.: Atmos. 2020. V. 125, N 18. P. e2020JD033335. DOI: 10.1029/2020JD033335.