Vol. 37, issue 02, article # 8

Lifar V. D., Didenko K . A., Koval A. V., Ermakova T . S. Numerical simulation of QBO and ENSO phase effect on the propagation of planetary waves and the evolvement of sudden stratospheric warming. // Optika Atmosfery i Okeana. 2024. V. 37. No. 02. P. 138–144. DOI: 10.15372/AOO20240207 [in Russian].
Copy the reference to clipboard


The purpose of the present investigation is to evaluate the effect of tropical oscillations on the polar stratosphere. The influence of the quasi-biennial oscillation (QBO) of the zonal wind in the equatorial stratosphere and the El Niño Southern Oscillation (ENSO) on the dynamic state of the stratosphere in winter and the evolvement of sudden stratospheric warming (SSW) is studied. A number of numerical experiments were carried out using the nonlinear general circulation model of the middle and upper atmosphere (MUAM) for the winter conditions of the Northern Hemisphere (January–February). They made it possible to estimate the sensitivity of the fields of zonal wind, temperature, and geopotential to taking into account certain ENSO and QBO phases in the model. Depending on the combination of phases, the statistics of observed SSWs and their evolution differ. For example, the largest number of SSWs is observed under the combination of El Niño and the easterly QBO phase, while major SSWs are not reproduced by the model under the combination of La Niña and the westerly QBO phase. For combinations of El Niño/easterly QBO, El Niño/westerly QBO, La Niña/easterly QBO, the fields of hydrodynamic parameters were averaged to investigate the characteristic features of the model “climatic" SSWs. It is shown that the largest temperature increase in the stratosphere and cooling in the mesosphere are modeled under El Niño conditions and the eastern phase of QBO, but the wind weakening is maxumal during El Niño and the western phase of QBO. The largest amplitudes of planetary waves are modeled during the QBO eastern phase regardless of the ENSO phase. The results can be used in climate forecasting on time scales from one month to decades.


numerical simulation, El Niño – Southern Oscillation, quasi-biennial oscillation, planetary wave, sudden stratospheric warming



1. Serva F., Cagnazzo C., Christiansen B., Yang Sh. The influence of ENSO events on the stratospheric QBO in a multi-model ensemble // Clim. Dyn. 2020. V. 54. P. 2561–2575.
2. Garfinkel C., Hartmann D. Different ENSO teleconnections and their effects on the stratospheric polar vortex // J. Geophys. Res. 2008. V. 113. P. D18114.
3. García-Herrera R., Calvo N., Garcia R.R., Giorgetta M.A. Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data // J. Geophys. Res. 2006. V. 111. P. D06101.
4. Garfinkel C.I., Hartmann D.L. Effects of the El Niño – Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere // J. Geophys. Res. 2007. V. 112. P. D19112.
5. Baldwin M.P. Gray L.J., Dunkerton T.J., Hamilton K., Haynes P.H., Randel W.J., Holton J.R., Alexander M.J., Hirota I., Horinouchi T., Jones D.B.A., Kinnersley J.S., Marquardt C., Sato K., Takahashi M. The quasi-biennial oscillation // Rev. Geophys. 2001. V. 39. P. 179–229.
6. Holton J.R., Tan H.C. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb // J. Atmos. Sci. 1980. V. 37. P. 2200–2208.
7. Salminen A., Asikainen T., Maliniemi V., Mursula K. Dependence of sudden stratospheric warmings on internal and external drivers // Geophys. Res. Lett. 2020. V. 47. P. 1–9.
8. Pogorel'tsev A.I. Generatsiya normal'nykh atmosfernykh mod stratosfernymi vastsilyatsiyami // Izv. RAN. Fizika atmosf. i okeana. 2007. V. 43, N 4. P. 463–475.
9. Koval' A.V. Raschet ostatochnoi meridional'noi tsirkulyatsii po dannym modeli srednei i verkhnei atmosfery // Uchenye zapiski RGGMU. 2019. V. 55. P. 25–32.
10. Ermakova T.S., Aniskina O.G., Statnaya I.A., Motsakov M.A., Pogoreltsev A.I. Simulation of the ENSO influence on the extra-tropical middle atmosphere // Earth, Planets Space. 2019. V. 71, N 8. P. 1–9.
11. Gavrilov N.M., Pogorel'tsev A.I., YAkobi K. Chislennoe modelirovanie vliyaniya shirotno-neodnorodnykh gravitatsionnykh voln na tsirkulyatsiyu srednei atmosfery // Izv. RAN. Fizika atmosf. i okeana. 2005. V. 41, N 1. P. 14–24.
12. Marchuk G.I. Numerical Methods in Weather Forecast. New York: Academic Press, 1967. P. 118–157.
13. Strang G. On the construction and comparison of difference schemes // SIAM. J. Numer. Anal. 1968. V. 5. P. 516–517.
14. Matsuno T. Numerical integration of the primitive equations by a simulated backward difference method // J. Meteorol. Soc. Jpn. 1966. V. 44. P. 76–84.
15. Koval A.V., Chen W., Didenko K.A., Ermakova T.S., Gavrilov N.M., Pogoreltsev A.I., Toptunova O.N., Wei K., Yarusova A.N., Zarubin A.S. Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events // Ann. Geophys. 2021. V. 39. P. 357–368.
16. Koval A.V., Gavrilov N.M., Kandieva K.K., Ermakova T.S., Didenko K.A. Numerical simulation of stratospheric QBO impact on the planetary waves up to the thermosphere // Sci. Rep. 2022. V. 12. P. 1–12.
17. Rakushina E.V., Kandieva K.K., Aniskina O.G., Pogorel'tsev A.I. Primenenie apparata estestvennykh ortogonal'nykh funktsii dlya analiza krupnomasshtabnykh dinamicheskikh protsessov v srednei atmosfere // Trudy GGO im. A.I. Voeikova. 2018. Iss. 591. P. 105–123.
18. Koval A.V., Gavrilov N.M., Pogoreltsev A.I., Kandieva K.K. Dynamical impacts of stratospheric QBO on the global circulation up to the lower thermosphere // J. Geophys. Res.: Atmos. 2022. V. 127. P. 1–14.