Vol. 37, issue 02, article # 5

Vlasenko S. S., Mikhailova A. S., Ivanova O. A., Nebos’ko E. Yu., Mikhailov E. F., Ryshkevich T. I. Spatial distribution of potential sources of carbonaceous aerosols in central Siberia. // Optika Atmosfery i Okeana. 2024. V. 37. No. 02. P. 114–120. DOI: 10.15372/AOO20240204 [in Russian].
Copy the reference to clipboard


We present the results of trajectory analysis of multi-year measurements of organic (OC) and elemental (EC) carbon in aerosols sampled on quartz filters from a height of 300 m at ZOTTO station. The EC and OC concentrations were determined by the thermo-optical method. The obtained time series were supplemented with the HYSPLIT backward trajectories. As a result the CWT and PSCF functions were calculated on a grid of 150 ´ 250 cells covering the geographical area 30 ´ 20° with the center in Zotino. These functions characterize the intensity of potential sources of carbon-containing aerosols for a given cell. The results allow us to identify the areas with the strongest organic and elemental carbon emissions and to estimate the seasonal variability of these emissions. In particular, in summer, the main sources of OC and EC are located to the east of Zotino, in the Podkamennaya Tunguska River region, and are most likely associated with forest fires. During the cold seasons, the sources of aerosol carbon dominate in the southwestern part of the geographical area under study, where large cities are located and the bulk of the population is concentrated. It is shown that regression analysis of CWT functions of organic and elemental carbon allows one in some cases to determine the dominant type of sources of carbonaceous aerosols. Our results can be used for estimation of aerosol radiative forcing in Siberia.


atmospheric composition, carbonaceous aerosol, trajectory method, elemental carbon, organic carbon


1. Crutzen P.J., Birks J.W. The atmosphere after a nuclear war: Twilight at noon // Ambio. 1982. V. 11. P. 115–125.
2. Golitsyn G.S., Ginsburg A.S. Comparative estimates of climatic consequences of Martian dust storms and of possible nuclear war // Tellus. 1985. V. 37B. P. 173–181.
3. Goetz S.J., Mack M.C., Gurney K.R., Randerson J.T., Houghton R.A. Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: Observations and model results contrasting northern Eurasia and North America // Environ. Res. Lett. 2007. V. 2, N 4. DOI: 10.1088/1748-9326/2/4/045031.
4. Tunved P., Hansson H.-C., Kerminen V.-M., Strömet J., Dal Maso M., Lihavainen H., Viisanen Y., Aalto P.P., Komppula M., Kulmala M. High natural aerosol loading over boreal forests // Science. 2006. V. 312. P. 261–263.
5. Kulmala M., Alekseychek P., Paramomnov M., Laurila T., Asmi E., Arneth А., Zilitinkevich S., Kerminen V.-M. On measurement of aerosol particles and greenhouse gases in Siberia and future research needs // Boreal. Environ. Res. 2011. V. 16. P. 337–362.
6. Andreae M.O., Rosenfeld D. Aerosol–cloud–recipitation interactions. Part 1. The nature and sources of cloud-active aerosols // Earth-Sci. Rev. 2008. V. 89. P. 13–41.
7. Shvidenko A.Z., Shchepachenko D.G., Vaganov E.A., Sukhinin A.I., Maksyutov Sh.Sh., Mkkallum I., Lakida I.P. Vliyanie prirodnykh pozharov v Rossii 1998–2010 yeas na ekosistemy i global'nyi uglerodnyi byudzhet // Dokl. AN. 2011. V. 441, N 4. P. 544-548.
8. Carslaw K.S., Lee L.A., Reddington C.L., Pringle K.J., Rap A., Forster P.M., Mann G.W., Spracklen D.V., Woodhouse M.T., Regayre L.A., Pierce J.R. Large contribution of natural aerosols to uncertainty in indirect forcing // Nature. 2013. V. 503, N 7. P. 67–71.
9. Popova S.A., Makarov V.I. Opredelenie kontsentratsii vtorichnogo organicheskogo ugleroda v aerozolyakh kontinental'noi territorii // Geo-Sibir'. 2009. V. 4, N 2. P. 57–60.
10. Safatov A.S., Buryak G.A., Olkin S.E., Reznikova I.K., Makarov V.I., Popova S.A. Analiz dannykh monitoringa organicheskogo/neorganicheskogo ugleroda i summarnogo belka v aerozole prizemnogo sloya atmosfery yuga Zapadnoi Sibiri // Optika atmosf. i okeana. 2013. V. 26, N 12. P. 1054–1058; Safatov A.S., Buryak G.A., Olkin S.E., Reznikova I.K., Makarov V.I., Popova S.A. Analysis of monitoring data on organic/elemental carbon and total protein in ground air layer aerosol in the south of Western Siberia // Atmos. Ocean. Opt. 2014. V. 27, N 2. P. 164–168.
11. Rakhimov R.F., Kozlov V.S., Panchenko M.V., Tumakov A.G., Shmargunov V.P. Svoistva atmosfernogo aerozolya v dymovykh shleifakh lesnykh pozharov po dannym spektronefelometricheskikh izmerenii // Optika atmosf. i okeana. 2014. V. 27, N 2. P. 126–133; Rakhimov R.F., Kozlov V.S., Panchenko M.V., Tumakov A.G., Shmargunov V.P. Properties of atmospheric aerosol in smoke plumes from forest fires according to spectronephelometer measurements // Atmos. Ocean. Opt. 2014. V. 27, N 3. P. 275–282.
12. Mikhailov E.F., Mironova S., Mironov G., Vlasenko S., Panov A., Chi X., Walter D., Carbone S., Artaxo P., Heimann M., Lavric J., Pöschl U., Andreae M.O. Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia // Atmos. Chem. Phys. 2017. V. 17. P. 14365–14392. DOI: 10.5194/acp-17-14365-2017.
13. Hopke P.K. Recent developments in receptor modeling // J. Chemometrics. 2003. V. 17. P. 255–265.
14. Giemsa E., Jacobeit J., Ries L., Hachinger S. Investigating regional source and sink patterns of Alpine CO2 and CH4 concentrations based on a back trajectory receptor model // Environ. Sci. Europe. 2019. V. 31. DOI: 10.1186/s12302-019-0233-x.
15. Hao T., Cai Z., Chen S., Han S., Yao Q., Fan W. Transport pathways and potential source regions of PM2.5 on the west coast of Bohai Bay during 2009–2018 // Atmosphere. 2019. V. 10. P. 345. DOI: 10.3390/ atmos10060345.
16. Birmili W., Stopfkuchen K., Herman M., Wiedensohler A., Heintzenberg J. Particle penetration through a 300 m inlet pipe for sampling atmospheric aerosols from a tall meteorological tower // Aerosol. Sci. Technol. 2007. V. 41. P. 811–817.
17. Chi X., Winderlich J., Mayer J.C., Panov A.V., Heimann M., Birmili W., Heintzenberg J., Cheng Y., Andreae M.O. Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to characterize polluted and pristine air in the Siberian taiga // Atmos. Chem. Phys. 2013. V. 13. P. 12271–12298. DOI: 10.5194/acp-13-12271-2013.
18. Vlasenko S.S., Volkova K.A., Ionov D.V., Ryshkevich T.I., Ivanova O.A., Mikhailov E.F. Izmenchivost' uglerodsoderzhashchei fraktsii atmosfernogo aerozolya vblizi Sankt-Peterburga // Izv. RAN. Fiz. atmosf. i okeana. 2019. V. 55, N 6. P. 147–156.
19. Bondur V.G., Voronova O.S., Cherepanova E.V., Tsidilina M.N., Zima A.L. Prostranstvenno-vremennoi analiz mnogoletnikh prirodnykh pozharov i emissii vrednykh gazov i aerozolei v Rossii po kosmicheskim dannym // Issled. Zemli iz kosmosa. 2020. N 4. P. 3–17.
20. Voronova O.S., Zima A.L., Kladov V.L., Cherepanova E.V. Anomal'nye pozhary na territorii Sibiri letom 2019 year // Issled. Zemli iz kosmosa. 2020. N 1. P. 70–82.
21. Andreae M.O., Merlet P. Emission of trace gases and aerosols from biomass burning // Glob. Biogeochem. Cycl. 2001. V. 15. P. 955–966. DOI: 10.1029/2000GB001382.
22. Wang Yu., Wang X., Kondo Y., Kajino M., Munger J.W., Hao J.M. Black carbon and its correlation with trace gases at a rural site in Beijing: Top-down constraints from ambient measurements on bottom-up emissions // J. Geophys. Res. 2011. V. 116. D24304. DOI: 10.1029/2011JD016575.
23. Kozlov V.S., Panchenko M.V., Yausheva E.P. Mass fraction of black carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia // Atmos. Environ. 2008. V. 42, N 11. P. 2611–2620.