Vol. 37, issue 02, article # 14

Busygin V. P., Kuzmina I. Yu. Transmission of laser pulses through crystalline clouds at “earth–space" paths. // Optika Atmosfery i Okeana. 2024. V. 37. No. 02. P. 176–183. DOI: 10.15372/AOO20240213 [in Russian].
Copy the reference to clipboard

Abstract:

High-precision satellite laser ranging (SLR) is actively used all over the world to solve a variety of tasks, primarily in geodesy and navigation. However, the disadvantage of laser systems is the dependence of the effectiveness of their use on weather conditions, in particular, on the presence of clouds. However, in separate experiments conducted at the JSC “Precision Systems and Instruments" (JSC “PSI"), it was possible to receive laser pulses on board a spacecraft in cloudy conditions. The purpose of the work is to evaluate the possibility of functioning of the metrological laser system (MLS) developed at JSC “PSI" in the presence of certain types and forms of clouds that allow the reception and determination of the parameters of laser pulses. Mathematical models of the atmosphere for a laser radiation wavelength of 0.532 microns have been developed, including optical characteristics of the crystalline medium for aggregate structures of ice particles. Calculations of the transfer of optical radiation of subnanosecond laser pulses from ground stations to high-orbit and low-orbit spacecrafts in the presence of upper- and middle-level crystalline clouds have been performed. The amplitude-time characteristics of optical signals on board the spacecrafts are calculated. It is shown that the principles of one-sided SLR can be implemented in the presence of cirrus, cirrus-layered, and cirrus-cumulus clouds in the sky, as well as altostratus clouds with established limitations on the optical thickness. The results confirm the possibility of increasing the technological performance of high-precision SLR systems, in particular, MLS, since the repeatability of the cloud forms under study over the territory of the Russian Federation is about 20%.

Keywords:

сrystalline clouds of the upper and middle tiers, satellite laser ranging, impulse response, Monte Carlo method

References:

1. Sadovnikov M.A., Sumerin V.V., Shargorodskii V.D. Odnostoronnyaya lazernaya dal'nometriya i ee primenenie v zadachax povysheniya tochnosti chastotno-vremennogo obespecheniya GLONASS // International Technical Workshop WPLTN-2012. 24–28 september 2012 year SPb., 2012. P. 18.
2. Zhabin A.S., Nabokin P.I. Metody dostizheniya subnanosekundnoi tochnosti izmerenii intervalov vremeni v bortovom terminale odnostoronnei lazernoi dal'nomernoi sistemy // Elektromagnitnye volny i elektronnye sistemy. 2013. V. 18. P. 39–42.
3. Klimkov Yu.M., Xoroshev M.V. Lazernaya texnika: ucheb. posobie. M.: MIIGAiK, 2014. 143 p.
4. Mak-Kartni E. Optika atmosfery. M.: Mir, 1979. 422 p.
5. A preliminary cloudless standard atmosphere for radiation computation // World Climate Research Program (WSP). WSP-112. WMO/TD. 1986. N 24. 60 p.
6. Ansmann A., Tesche M., Groß S., Freudenthaler V., Seifert P., Hiebsch A., Schmidt J. The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany // Geophys. Res. Lett. 2010. V. 37. P. 13810.
7. Gérard B., Déuze J.L., Herman M., Kaufman Y.J., Lallart P., Oudard C., Remer B., Roger L.A., Six B., Tan D. Comparisons between POLDER 2 and MODIS/Terra aerosol retrievals over ocean // J. Geophys. Res. 2005. V. 110. P. 24211.
8. Meeting of JSC Experts on Aerosols and Climate: World Climate Program. Geneva: WCP, 1981. 72 p.
9. Hess M., Koepke P., Schult I. Optical properties of aerosols and clouds: The Software Package OPAC // Bull. Am. Meteorol. Soc. 1998. V. 79. P. 831–844.
10. Krekov G.M., Raximov R.F. Opticheskie modeli atmosfernogo aerozolya. Tomsk: Izd-vo SO AN SSSR, 1986. 294 p.
11. Deirmendzhan D. Rasseyanie elektromagnitnogo izlucheniya sfericheskimi polidispersnymi chastitsami. M.: Mir, 1971. 166 p.
12. Zverev A.S. Sinopticheskaya meteorologiya. L.: Gidrometeoizdat, 1977. 712 p.
13. Oblaka i oblachnaya atmosfera. Spravochnik / pod red. I.P. Mazina, A.X. Xrgiana. L.: Gidrometeoizdat, 1989. 648 p.
14. Lazernyi kontrol' atmosfery / pod red. E.D. Xinkli. M.: Mir, 1979. 416 p.
15. Volkovitskii O.A., Pavlova L.N., Petrushin A.G. Opticheskie svoistva kristallicheskix oblakov. L.: Gidrometeoizdat, 1984. 200 p.
16. Baum B.A., Kratz D.P., Yang P. Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS 1. Data and models // J. Geophys. 2000. V. 105. P. 11767–11780.
17. Konoshonkin A.V., Borovoi A.G., Kustova N.V., Okamoto H., Förstner J. Light scattering by ice crystals of cirrus clouds: from exact numerical methods to physical- optics approximation // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 195. P. 132–140.
18. Baran A. On the remote sensing and radiative properties of cirrus // Light Scattering Reviews 2. 2007. Р. 59–95.
19. Yang P., Bi L., Baum B.A., Liou K.N., Kattawar G.W., Mishchenko M.I., Cole B. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 nm // J. Atmos. Sci. 2013. V. 70. P. 330–347.
20. Baran A., Havemann S. The dependence of retrieved cirrus ice-crystal effective dimension on assumed ice crystal geometry and size-distribution function at solar wavelengths // Q. J. R. Meteorol. Soc. 2004. V. 130. P. 2153–2167.
21. Baum B., Yang Р., Heymsfield A., Bansemer А., Cole В., Merrelli А., Schmitt С., Wang Chenxi. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. Р. 123–139.
22. Petrushin A.G. Intensivnost' izlucheniya, rasseyannogo pod malymi uglami orientirovannymi ledyanymi kristallami // Izv. AN SSSR. Ser. Fizika atmosf. i okeana. 1987. V. 23, N 5. P. 546–548.
23. Zhuravleva T.B. Imitatsionnoe modelirovanie polei yarkosti solnechnoi radiatsii v prisutstvii opticheski anizotropnoi kristallicheskoi oblachnosti: algoritm i rezul'taty testirovaniya // Optika atmosf. i okeana. 2020. V. 33, N 12. P. 937–943; Zhuravleva T.B. Simulation of brightness fields of solar radiation in the presence of optically anisotropic ice-crystal clouds: Algorithm and test results // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 140–147.
24. Tokarev I.A., Rybin I.A., Busygin V.P., Shchipletsov M.V., Kovalevskaya O.I., Chernenko A.E., Vagin Yu.P., Kuz'mina I.Yu. Kharakteristiki opticheskogo izlucheniya bolidov v usloviyax oblachnosti // Inzhenernaya fizika. 2020. N 7. P. 3–15.
25. Busygin V.P., Krasnokutskaya L.D., Kuz'mina I.Yг. Perenos opticheskogo izlucheniya podoblachnykh molnii v kosmos // Izv. RAN. Ser. Fizika atmosf. i okeana. 2019. V. 55, N 5. P. 85–93.