Vol. 37, issue 02, article # 13

Shikhovtsev A. Yu., Kovadlo P. G. Statistical estimations of the vapor content and optical thickness of the atmosphere using reanalysis and radiosonding data as applied to millimeter telescopes. // Optika Atmosfery i Okeana. 2024. V. 37. No. 02. P. 169–175. DOI: 10.15372/AOO20240212 [in Russian].
Copy the reference to clipboard

Abstract:

Possibilities of astronomical millimeter and submillimeter observations strongly depend on the precipitable water vapor (PWV), which determines the radiation absorption. The precise determination of PWV within large regions is one of key astroclimate problems. In this work, we refine estimates of PWV content for different sites based on processing ERA5 reanalysis and radiosounding data and test the previously proposed technique for correcting PWV values taking into account the characteristic water vapor vertical scale and relative altitude difference of grid nodes. In addition, the spatial distribution of the nighttime atmospheric optical thickness at a wavelength of 3 mm averaged over December – February 2013–2022 was derived for the first time for Russia and the adjacent territory. Our results can serve the basis for selecting an astronomic site for a new large millimeter telescope within the Eurasian Sub-Millimeter and Millimeter Telescope Project.

Keywords:

astroclimate, atmosphere, water vapor, millimeter radiation, inversion layers

Figures:

References:

1. Marukhno A.S., Bubnov G.M., Vdovin V.F., Voziakova O.V., Zemlyanukha P.M., Zinchenko I.I., Mingaliev M.G., Shatsky N.I. Analysis of the millimeter-band astroclimate at the Caucasus mountain observatory // 7th All-Russian Microwave Conference (RMC). 2020. P. 184–188. DOI: 10.26119/978-5-6045062-0-2_2020_184.
2. Balega Y., Bubnov G., Glyavin M., Gunbina A., Danilevsky D., Denisov G., Khudchenko A., Lesnov I., Marukhno A., Mineev K., Samsonov S., Shanin G., Vdovin V. Atmospheric propagation studies and development of new instrumentation for astronomy, radar, and telecommunication applications in the subterahertz frequency range // Appl. Sci. 2022. V. 12. P. 5670. DOI: 10.3390/app12115670.
3. Bubnov G.M., Abashin E.B., Balega Y.Y., Bolshakov O.S., Dryagin S.Y., Dubrovich V.K., Marukhno A.S., Nosov V.I., Vdovin V.F., Zinchenko I.I. Searching for new sites for THz observations in Eurasia // IEEE Trans. Terahertz Sci. Technol. 2015. V. 5, N 1. P. 64–72. DOI: 10.1109/TTHZ.2014.2380473.
4. Bubnov G.M., Grigor'ev V.F., Zinchenko I.I., Zemlyanukha P.M., Il'in G.N., Kabanov D.M., Nosov V.I., Vdovin V.F. Soglasovannoe opredelenie integral'noi vlazhnosti i effektivnoi opticheskoi tolshchiny atmosfery v millimetrovom diapazone dlin voln s ispol'zovaniem shirokopolosnykh radiometrov // Izv. vuzov. Radiofiz. 2019. V. 62, N 12. P. 920–931.
5. Shikhovtsev A.Yu., Kovadlo P.G., Khaikin V.B., Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V., Kiselev A.V., Shikhovtsev M.Yu. Atmospheric conditions within Big Telescope Alt-azimuthal region and possibilities of astronomical observations // Remote Sens. 2022. V. 14. P. 1833. DOI: 10.3390/rs14081833.
6. Bolbasova L., Shikhovtsev A., Ermakov S.A. Statistics of precipitable water vapour above the sites of the 6-m Big Telescope Alt-azimuthal and new 3-m Large Solar Telescope using ERA5 data // MNRAS. 2023. V. 520, N 3. P. 4336–4344. DOI: 10.1093/mnras/stad300.
7. Bolbasova L.A. Atmospheric stability above 6-m Big Telescope Alt-azimuthal site // Proc. SPIE. 2022.  V. 12341. P. 123410W. DOI: 10.1117/12.2644895.
8. Bolbasova L.A., Kopylov E.A. Long-term trends of astroclimatic parameters above the Terskol observatory // Atmosphere. 2023. V. 14. P. 1264.
9. Khaikin V., Lebedev M., Shmagin V., Zinchenko I., Vdovin V., Bubnov G., Edelman V., Yakopov G., Shikhovtsev A., Marchiori G., Tordi M., Duan R., Li D. On the Eurasian SubMillimeter Telescopes project (ESMT) // 7th All-Russian Microwave Conference (RMC). 2020. P. 47–51. DOI: 10.1109/RMC50626.2020.9312233.
10. Chukin V.V. Issledovanie atmosfery metodom elektromagnitnogo prosvechivaniya. SPb.: Izd-vo RGGMU, 2004. 107 p.
11. Marin J.C., Ortiz F., Cure M. Forecasting the precipitable water vapour along lines of sight in the Chajnantor region from a WRF simulation // MNRAS. 2023. V. 522. P. 457–465. DOI: 10.1093/mnras/stad961.
12. Valdes E.A.M., Morris B.M., Demory B.-O. Monitoring precipitable water vapour in near real-time to correct near-infrared observations using satellite remote sensing // Astron. Astrophys. 2021. V. 649. P. A132. DOI: 10.1051/0004-6361/202039629.
13. Baker A.D., Blake C.H., Sliski D.-H. Monitoring Telluric Absorption with CAMAL // PASP. 2017. V. 129. P. 085002. DOI: 10.1088/1538-3873/aa77ab.
14. Hersbach H., Bell B., Berrisford P., Hirahara S., Horanyi A., Munoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Holm E., Janiskova M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoi G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thepaut J.-N. The ERA5 global reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146, N 730. P. 1999–2049.
15. Bergner I.K., Krat A.V., Pogodin M.A., Morozova S.M., Panchuk V.K., Chuntonov G.A. Study of the moisture content and transmittance of the daytime atmosphere in the region at the site of the Large Telescope // Astrofizicheskie Issledovaniia. 1978. V. 10. P. 52–60.
16. Shikhovtsev A.Yu., Khaikin V.B., Mironov A.P., Kovadlo P.G. Statisticheskii analiz soderzhaniya vodyanogo para na Severnom Kavkaze i v Krymu // Optika atmosf. i okeana. 2022. V. 35, N 1. P. 67–73; Shikhovtsev A.Yu., Khaikin V.B., Mironov A.P., Kovadlo P.G. Statistical analysis of the water vapor content in North Caucasus and Crimea // Atmos. Ocean. Opt. 2022. V. 35, N 2. P. 168–175.
17. Mironov A.P., Khaikin V.B. Makoev G.A. Validatsiya GNSS metoda izmerenii osazhdennogo vodyanogo para s pomoshch'yu radiozondirovaniya // Optika atmosfery i okeana. Fizika atmosfery: Materialy XXIX Mezhdunar. simp. Tomsk: Izd-vo IOA SO RAN, 2023. P. А388–А391.
18. Bubnov G., Vdovin V., Khaikin V., Tremblin P., Baron P. Analysis of variations in factors of specific absorption of sub-terahertz waves in the Earth`s atmosphere // 7th All-Rus. Microwave Conf. (RMC). 2020. P. 229–232. DOI: 10.1109/RMC50626.2020.9312314.
19. Arsaev I.E., Bykov V.Yu., Il'in G.N., Yurchuk E.F. Radiometr vodyanogo para – sredstvo izmerenii radioyarkostnoi temperatury atmosfery // Izmeritel'naya tekhnika. 2017. V. 60, N 5. P. 60–65.
20. Shvetsov A.A., Belikovich M.V., Krasil'nikov A.A., Kulikov M.YU., Kukin L.M., Ryskin V.G., Bol'shakov O.S., Lesnov I.V., Shchitov A.M., Feigin A.M., Khaikin V.B., Petrov I.V. Spektroradiometr 5-millimetrovogo diapazona dlya issledovaniya atmosfery i podstilayushchei poverkhnosti // Pribory i tekhnika eksperimenta. 2020. N 6. P. 100–104. DOI: 10.31857/S0032816220050377.
21. Wang X., Chen F., Ke F., Xu C. An empirical grid model for precipitable water vapor // Remote Sens. 2022. V. 14. P. 6174. DOI: 10.3390/rs14236174.
22. Shikhovtsev A.Yu., Kovadlo P.G., Khaikin V.B., Kiselev A.V. Precipitable water vapor and fractional clear sky statistics within the Big Telescope Alt-azimuthal region // Remote Sens. 2022. V. 14. P. 6221. DOI: 10.3390/rs14246221.
23. Eliseev A.V., Timazhev A.V., Khimenes P.L. Vertikal'nyi masshtab dlya profilei vodyanogo para i soedinenii sery v nizhnei troposfere // Optika atmosf. i okeana. 2022. V. 35, N 7. P. 572–580; Eliseev A.V., Timazhev A.V., Jimenez P.L. Scale heights of water vapor and sulfur compounds in the lower troposphere // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 782–792.
24. Otarola A., Hiriart D., Perez-Leon J.E. Statistical characterization of precipitable water vapor at San Pedro Martir Sierra in Baja California // Revista Mexicana de Astronomia y Astrofisica. 2009. V. 45. P. 161–169.
25. Otarola A.C., Querel R., Kerber F. Precipitable Water Vapor: Considerations on the water vapor scale height, dry bias of the radiosonde humidity sensors, and spatial and temporal variability of the humidity field // arXiv:1103.3025. 2011. DOI: 10.48550/arXiv.1103.3025.
26. Cortes F., Cortes K., Reeves R., Bustos R., Radford S. Twenty years of precipitable water vapor measurements in the Chajnantor area // Astron. Astrophys. 2020. V. 640. P. A126. DOI: 10.1051/0004-6361/202037784.
27. Panchuk V.E., Afanas’ev V.L. Astroclimate of Northern Caucasus – myths and reality // Astrophys. Bull. 2011. V. 66, N 2. P. 233–254.
28. Shikhovtsev A.Yu., Khaikin V.B., Kovadlo P.G., Baron P. Opticheskaya tolshcha atmosfery nad pikom Terskol // Optika atmosf. i okeana. 2022. V. 35, N 11. P. 956–962; Shikhovtsev A.Yu., Khaikin V.B., Kovadlo P.G., Baron P. Optical thickness of the atmosphere above the Terskol Peak // Atmos. Ocean. Opt. 2023. V. 36, N 1. P. 78–85. DOI: 10.1134/S1024856023020148.
29. Baron P., Mendrok J., Yasuko K., Satoshi O., Takamasa S., Kazutoshi S., Kosai S., Hideo S., Urban J. AMATERASU: Model for atmospheric TeraHertz radiation analysis and simulation // J. Nat. Inst. Inform. Commun. Technol. 2008. V. 55, N 1. P. 109–121.
30. Liebe H.J. MPM – an atmospheric millimeter-wave propagation mode // Int. J. Infrared Millim. Waves. 1989. V. 10, N 6. P. 631–650.
31. Bubnov G.M. Issledovaniya pogloshcheniya voln millimetrovogo diapazona v atmosfere zemli i materialakh kriogennykh reflektorov: dis. ... kand. fiz.-mat. nauk. Nizhnii Novgorod: In-t prikladnoi fiziki RAN, 2022. 133 p.