Vol. 37, issue 02, article # 11

Usacheva M. A., Smyshlyaev S. P., Zubov V . A., Rozanov E. V. Modelling the climate changes and atmospheric ozone variations in XX–XXI by CCM SOCOLv3. // Optika Atmosfery i Okeana. 2024. V. 37. No. 02. P. 158–162. DOI: 10.15372/AOO20240210 [in Russian].
Copy the reference to clipboard

Abstract:

To estimate the relative contribution of the main chemical and physical processes to the observed variability of climate and atmospheric gas composition in 1980–2020, numerical experiments were conducted with the chemical and climatic model (CMC) SOCOLv3. The following factors of changes in ozone content and atmospheric temperature were studied: changes in the content of ozone-depleting substances; changes in greenhouse gas concentrations, ocean surface temperature and sea ice area; variations in solar activity, and changes in atmospheric aerosol content. To estimate the relative role of these factors, calculations were carried out on scenarios taking into account each factor separately and all factors together. According to the results of numerical experiments, the relative contribution of various factors to changes in the temperature of the troposphere and the lower stratosphere, as well as the ozone content was revealed for the period from 1980 to 2020. The model results have been compared with the satellite SBUV data.

Keywords:

numerical modeling, stratospheric ozone, ozone-depleting substance, climate change, Montreal Protocol, solar activity, stratospheric aerosol

Figures:

References:

1. Andreae M.O., Merlet P. Emission of trace gases and aerosols from biomass burning // Glob. Biogeochem. Cycl. 2001. V. 15, N 4. P. 955–966.
2. Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion. GAW Report N 278. WMO: Geneva, 2022. 509 p.
3. Rogalev A.N. Voprosy realizatsii garantirovannykh metodov vklyucheniya vyzhivayushchikh traektorii upravlyaemykh sistem // Sib. aerokosm. zhurn. 2011. V. 35, N 2. P. 54–58.
4. Dhomse S.S., Kinnison D., Chipperfield M.P., Salawitch R.J., Cionni I., Hegglin M.I., Abraham N.L., Akiyoshi H., Archibald A.T., Bednarz E.M., Bekki S., Braesicke P., Butchart N., Dameris M., Deushi M., Frith S., Hardiman S.C., Hassler B., Horowitz L.W., Hu R.-M., Jöckel P., Josse B., Kirner O., Kremser S., Langematz U., Lewis J., Marchand M., Lin M., Man­cini E., Marécal V., Michou M., Morgenstern O., O'Connor F.M., Oman L., Pitari G., Plummer D.A., Pyle J.A., Revell L.E., Rozanov E., Schofield R., Stenke A., Stone K., Sudo K., Tilmes S., Visioni D., Yamashita Y., Zeng G. Estimates of ozone return dates from Chemistry–Climate Model Initiative simulations // Atmos. Chem. Phys. 2018. V. 18. P. 8409–8438.
5. IPCC (Intergovernmental Panel on Climate Change), Aviation and the Global Atmosphere / J. Penner et al. (eds.). Cambridge: Cambridge University Press, 1999. 384 p.
6. Wang H., Lu X., Jacob D.J., Cooper O.R., Chang K.-L., Li K., Gao M., Liu Y., Sheng B., Wu K., Wu T., Zhang J., Sauvage B., Nédélec P., Blot R., Fan S. Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: An integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations // Atmos. Chem. Phys. 2022. V. 22. P. 13753–13782. DOI: 10.5194/acp-22-13753-2022.
7. Isaksen I.S.A., Granier С., Myhre G., Berntsen T.K., Dalsøren S.B., Gauss M., Klimont Z., Benestad R., Bousquet P., Collins W., Cox T., Eyring V., Fowler D., Fuzzi S., Jöckel P., Laj P., Lohmann U., Maione M., Monks P., Prevot A.S.H., Raes F., Richter A., Rognerud B., Schulz M., Shindell D., Stevenson D.S., Storelvmo Wild M., Wuebbles D. Atmospheric composition change: Climate–chemistry interactions // Atmos. Environ. 2009. V. 43. P. 5138–5192.
8. Engel A., Rigby M, Burkholder J.B., Fernandez R.P., Froidevaux L., Hall B.D., Hossaini R., Saito T., Vollmer M.K., Yao B. Chapter 1: Update on ozone-depleting substances (ODSs) and other gases of interest to the Montreal Protocol // Scientific Assessment of Ozone Depletion: 2018. WMO, UNEP: Geneva, Switzerland, 2018. P. 91.
9. Stenke A., Schraner M., Rozanov E., Egorova T., Luo B., Peter T. The SOCOL version 3.0 chemistry–climate model: Description, evaluation, and implications from an advanced transport algorithm // Geosci. Model Dev. 2013. V. 6. P. 1407–1427.
10. Sukhodolov T., Egorova T., Stenke A., Ball W.T., Brodowsky C., Chiodo G., Feinberg A., Friedel M., Karagodin-Doyennel A., Peter T., Sedlacek J., Vattioni S., Rozanov E. Atmosphere – ocean – aerosol – chemistry – climate model SOCOLv4.0: Description and evaluation // Geosci. Model Dev. 2021. V. 14. P. 5525–5560.