Vol. 37, issue 01, article # 3

Kapitanov V. A., Ponurovskii Ya. Ya. Analysis of the absorption spectrum of pure H2S in the ranges 6227.506–6236.844 and 6244.188–6245.348 cm-1: absorption line positions and intensities, self-broadening and self-shift coefficients. // Optika Atmosfery i Okeana. 2024. V. 37. No. 01. P. 22–31. DOI: 10.15372/AOO20240103 [in Russian].
Copy the reference to clipboard

Abstract:

For the first time with high spectral resolution (0,00016 cm-1) and threshold sensitivity (~ 1E-26 cm/molec.), the absorption spectrum of the H2S molecule was recorded in the spectral ranges 6227.506–6236.844 and 6244.188–6245.348 cm-1 at room temperature and pressures of 0.001–0.06 atm. The measurements were carried out at the Institute of General Physics on a high-sensitivity high-resolution diode laser spectrometer with a signal-to-noise ratio of more than 10000. Line center shift coefficients D0/P and collisional widths G2/P have been estimated for the first time; new spectral lines have been recorded. The estimates of the experimental values of the positions of the line centers determined in this work differ from the calculated positions of the centers in the HITRAN database by the value Δν = (νH - νexp) × 103 cm-1 » 0.001–0.01 cm-1. The intensity estimates coincide much worse, the relative differences 100% × (SH - Sexp)/SH amount to tens of percent, the intensities of five lines differ by hundreds of percent or more.

Keywords:

diode laser spectroscopy, hydrogen sulfide, molecular absorption lines, Voigt profile, broadening and shift of absorption lines

Figures:

References:

1. Lagutin V.V. Zashchita atmosfery na ob"ektakh dobychi i pererabotki prirodnogo gaza, soderzhashchego serovodorod // Sovremennye naukoemkie tekhnologii. 2005. N 3. P. 61–62. URL: https://top-technologies.ru/ru/article/view?id=22436.
2. Marriott R.A., Pirzadeh P., Marrugo-Hernandez J.J., Raval S. Hydrogen sulfide formation in oil and gas // Can. J. Chem. 2015. V. 94, N 4. P. 406–413. DOI: 10.1139/cjc-2015-0425.
3. Gabibov R.A., Telyatnikova A.M. Protsess obrazovaniya serovodoroda v kanalizatsii i posledstviya ego vydeleniya v okruzhayushchuyu sredu // Molodoi uchenyi. 2020. V. 311, N 21. P. 463–465. URL: https://moluch. ru/archive/311/70408/.
4. Ausma T., De Kok L.J. Atmospheric H2S: Impact on plant functioning // Front. Plant Sci. 2019. V. 10. P. 743. DOI: 10.3389/fpls.2019,00743.
5. Disbrow E., Stokes K.Y., Ledbetter C., Patterson J., Kelley R., Pardue S., Reekes T., Larmeu L., Batra V., Yuan Sh., Cvek U., Trutschl M., Kilgore Ph., Alexander J.S., Kevil C. Plasma hydrogen sulfide: A biomarker of Alzheimer's disease and related dementias // Alzheimer's & Dementia. 2021. V. 8, N 17. P. 1391–1402. DOI: 10.1002/alz.12305.
6. Peck S.C., Denger K., Burrichter A., Schleheck D. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia // Proc. Natl. Acad. Sci. 2019. V. 116, N 8. P. 3171–3176.
7. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashe­mi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcislo P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Cane E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Reed Z.D, Rey M., Richard C., Tobias R., Sadiek I., Schwenke D.W, Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt-2021.107949.
8. Kapitanov V.A., Osipov K.Yu., Protasevich A.E., Ponomarev Yu.N., Ponurovskii Ya.Ya. Effekt Dike, stolknovitel'noe suzhenie i interferentsiya pri samoushirenii linii pogloshcheniya CO2 v polose 30013 ← 00001. Izmereniya i testirovanie modelei kontura // Optika atmosf. i okeana. 2021. V. 34, N 5. P. 334–342; Kapitanov V.A., Osipov K.Yu., Protasevich A.E., Ponomarev Yu.N., Ponurovskii Ya.Ya. Dicke narrowing, pressure dependence, and mixing of self-broadened CO2 absorption lines in the 30013 ← 00001 band: Measurements and line profile testing // Atmos. Ocean. Opt. 2021. V. 34, N 5. P. 381–389.
9. Kapitanov V.A., Osipov K.Yu., Protasevich A.E., Ponomarev Yu.N., Ponurovskii Ya.Ya. Izmereniya i analiz spektra perekryvayushchikhsya linii pogloshcheniya chistogo NH3 v oblasti 6611,6–6613,5 cm-1 // Optika atmosf. i okeana. 2022. V. 35, N 11. P. 896–901; Kapitanov V.A., Ponurovskii Ya.Ya., Osipov K.Yu., Ponomarev Yu.N. Pure NH3 spectrum measurements and analysis of overlapping absorption lines in the 6611.6–6613.5 cm-1 region // Atmos. Ocean. Opt. 2023. V. 36, N 1. P. 7–13.
10. Hartmann J.-M., Tran H., Armante R., Boulet C., Campargue A., Forget F., Gianfrani L., Gordon I., Guerlet S., Gustafsson M., Hodges J.T., Kassi S., Lisak D., Thibault F., Toon G.C. Recent advances in collisional effects on spectra of molecular gases and their practical consequences // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 213. P. 178–227. DOI: 10.1016/j.jqsrt.2018. 03.016.
11. Chubb K.L, Naumenko O., Keely S., Sebestiano B., Macdonald S., Mukhtar M., Grachov A., White J., Coleman E., Liu A., Fazliev A.Z., Polovtseva E.R., Horneman V.-M., Campargue A., Furtenbacher T., Császár A.G., Yurchenko S.N., Tennyson J. Marvel analysis of the measured high-resolution rovibrational spectra of H232S // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 218. P. 178–186. DOI: 10.1016/j.jgsrt.2018.07.012.
12. Polovtseva E.R., Lavrentiev N.A., Voronina S.S., Naumenko O.V., Fazliev A.Z. Информационная система для решения задач молекулярной спектроскопии. 5. Колебательно-вращательные переходы и уровни энергии молекулы H2S // Оптика атмосф. и океана. 2011. V. 24, N 10. P. 898–905; Polovtseva E.R., Lavrentiev N.A., Voronina S.S., Naumenko O.V., Fazliev A.Z. Information system for molecular spectroscopy. 5. Ro-vibrational transitions and energy levels of the hydrogen sulfide molecule // Atmos. Ocean. Opt. 2012. V. 25, N 2. P.157–165.
13. Mikhailenko S.N., Babikov Yu.L., Golovko V.F. Informatsionno-vychislitel'naya sistema «Spektroskopiya atmosfernykh gazov». Struktura i osnovnye funktsii // Optika atmosf. i okeana. 2005. V. 18, N 9. P. 765–776.
14. Rohart F., Mader H., Nikolaisen H.-W. Speed dependence of rotational relaxation induced by foreign gas collisions: studies on CH3F by millimeter wave coherent transients // J. Chem. Phys. 1994. V. 101. P. 6475–6486. DOI: 10.1063/1.468342.
15. Roharf F., Ellendt A., Kaghat F., Mäder H. Self and polar foreign gas line broadening and frequency shifting of CH3F: Effect of the speed dependence observed by millimeter-wave coherent transients // J. Mol. Spectrosc. 1997. V. 185. P. 222–233. DOI: 10.1006/jmsp.1997.7395.