Vol. 36, issue 12, article # 9
Copy the reference to clipboard
Abstract:
Methods of laser-induced fluorescence and their use in monitoring tools allow solving a number of key problems in the detection of algal blooms. The automated system developed by us makes it possible to process and analyze huge amount of fluorescent spectral characteristics of microalgae monocultures, to determine the dominant monocultures in the water area at the level of genus, and to estimate a possibility of their blooming. In addition, the system makes it possible to catalog reference optical characteristics of microalgae monocultures and to implement interactive algorithms for detecting dangerous microalgae species.
Keywords:
automated system, similarity index, identification, red tide, harmful algal bloom, chlorophyll a, LIF
Figures:
References:
1. López-Cortés D.L., Núñez-Vázquez E.J., Dorantes-Aranda J.J., Band-Schmidt C.J., Hernández-Sandoval F.E., Bustillos-Guzman J.J., Leyva-Valencia I., Fernández-Herrera L.J. The state of knowledge of harmful algal blooms of Margalefidinium (Cochlodinium) polykrikoides in Latin America // Front. Mar. Sci. 2019. V. 6. P. 1–10. DOI: 10.3389/fmars.2019.00463.
2. Sakamoto S., Lim W.A., Lu D., Dai X., Orlova T., Iwataki M. Harmful algal blooms and associated fisheries damage in East Asia: Current status and trends in China, Japan, Korea and Russia // Harmful Algae. 2020. 101787. DOI: 10.1016/j.hal.2020.101787.
3. Anderson D.M. Red tides // Sci. Am. 1994. V. 271. P. 62–68. DOI: 10.1038/scientificamerican0894-62.
4. Guy R.C. Red tide // Encyclopedia of Toxicology. 3rd ed. 2014. V. 4. P. 65–66. DOI: 10.1016/B978-0-12-386454-3.00919-2.
5. Anderson D.M. Harmful Algal Blooms. Amsterdam: Elsevier, 2019. P. 309–321.
6. Kouakou C.R.C., Poder T.G. Economic impact of harmful algal blooms on human health: A systematic review // J. Water Health. 2019. V. 17. P. 499–516. DOI: 10.2166/wh.2019.064.
7. Lum W.M., Benico G., Doan-Nhu H., Furio E., Leaw C.P., Leong S.C.Y., Lim P.T., Lim W.A., Lirdwitayaprasit T., Lu S., Muawanah U., Van Nguyen N., Orlova T.Yu., Rachman A., Sakamoto S., Takahashi K., Tung Teng S., Thoha H., Wang P., Yñiguez A.T., Wakita K., Iwataki M. The harmful raphidophyte Chattonella (Raphidophyceae) in Western Pacific: Its red tides and associated fisheries damage over the past 50 years (1969–2019) // Harmful Algae. 2021. V. 107. DOI: 10.1016/j.hal.2021.102070.
8. Trainer V.L., Hardy F.J. Integrative monitoring of marine and freshwater harmful algae in washington state for public health protection // Toxins (Basel). 2015. V. 7. P. 1206–1234. DOI: 10.3390/toxins7041206.
9. Cheng K.H., Chan S.N., Lee J.H.W. Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs) // Mar. Pollut. Bull. 2020. V. 152. P. 110889. DOI: 10.1016/j.marpolbul.2020.110889.
10. Bilyeu L., Bloomfield B., Hanlon R., González-Rocha J., Jacquemin S.J., Ault A.P., Birbeck J.A., Westrick J.A., Foroutan H., Ross S.D., Powersab C.W., Schmale D.G.III. Drone-based particle monitoring above two harmful algal blooms (HABs) in the USA // Environ. Sci. Atmos. 2022. V. 2. P. 1351–1363. DOI: 10.1039/d2ea00055e.
11. Kul’chin Y.N., Bukin O.A., Konstantinov O.G., Voznesenskii S.S., Pavlov A.N., Gamayunov E.L., Mayor A.Y., Stolyarchuk S.Y., Korotenko A.A., Popik A.Yu. Kompleksnyj kontrol' sostoyaniya morskih akvatorij opticheskimi metodami. Part 1. Kontseptsiya postroeniya mnogourovnevyh izmeritel'nyh sistem dlya ekologicheskogo monitoringa pribrezhnyh akvatorij // Optika atmosf. i okeana. 2012. V. 25, N 7. P. 633–637; Kul’chin Y.N., Bukin O.A., Konstantinov O.G., Voznesenskii S.S., Pavlov A.N., Gamayunov E.L., Mayor A.Y., Stolyarchuk S.Y., Korotenko A.A., Popik A.Y. Complex monitoring of the state of sea water basins by optical methods. Part 1. The concept of constructing the multilevel measurement systems for ecological monitoring of coastal water basins // Atmos. Ocean. Opt. 2012. V. 25, N 6. P 446–450. DOI: 10.1134/S1024856012060085.
12. Voznesenskiy S.S., Gamayunov E.L., Popik A.Y., Korotenko A.A. A fiber-optic fluorometer for measuring phytoplankton photosynthesis parameters // Instruments Exp. Tech. 2014. V. 57. P. 330–335.
13. Voznesenskiy S.S., Gamayunov E.L., Popik A.Y., Markina Z.V., Orlova T.Y. Temperature dependence of the parameters of laser-induced fl uorescence and species composition of phytoplankton: The theory and the experiments // Algal Res. 2019. V. 44. P. 101719. DOI: 10.1016/j.algal.2019.101719.
14. Popik A., Gamayunov E., Voznesenskiy S., Markina Z., Orlova T. The study of fluorescence features of microalgae from the genus Pseudo-nitzschia and the possibility of their detection in water // Algal Res. 2022. V. 64. P. 102662. DOI: 10.1016/j.algal.2022.102662.
15. Sefa-Ntiri B., Kwakye-Awuah B., Edziah R., Anderson B., Armah F.A., Mensah-Amoah P., Sackey S.S., Sam F., Akyea A.G., Yunus S., Tatchie E., Nkansah B.K., Kumi F. Dissolved organic matter in hand-dug well water as groundwater quality indicator: Assessment using laser-induced fluorescence spectroscopy and multivariate statistical techniques // SN Appl. Sci. 2020. V. 2. P. 1–15. DOI: 10.1007/s42452-020-2446-4.
16. Salyuk P.A., Doroshenkov I.M., Klyuger K.S., Bukin O.A., Krikun V.A., Major A.Yu. Flyuorestsentsiya rastvorennyh organicheskih veshchestv v dal'nevostochnyh moryah pri mnogochastotnom vozbuzhdenii // Optika atmosf. i okeana. 2013. V. 26, N 4. P. 286–290.
17. Sun L., Wang S., Chen L., Gong X. Promising fluorescent probes from phycobiliproteins // IEEE J. Sel. Top. Quant. Electron. 2003. V. 9. P. 177–188. DOI: 10.1109/JSTQE.2003.812499.
18. Voznesenskiy S.S., Popik A.Y., Gamayunov E.L., Markina Z.V., Orlova T.Y. The dependence of phytoplankton fluorescence on the thermal stress factor // Biophysics. 2016. V. 61. P. 73–77.
19. Klyshko D.N., Fadeev V.V. Distantsionnoe opredelenie kontsentratsii primesej v vode metodom lazernoj spektroskopii s kalibrovkoj po kombinatsionnomu rasseyaniyu // Dokl. AN SSSR. 1978. V. 238. P. 320–323.
20. Efimova E.A., Kovalev Yu.S., Tyutyunnikov S.I. Issledovanie struktury vody s pomoshch'yu lazernogo konfokal'nogo skaniruyushchego mikroskopa // Pis'ma V. Echaya. 2008. V. 5. P. 99–108.
21. Chung N.C., Miasojedow B.Z.. Startek M., Gambin A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data // BMC Bioinformatics. 2019. V. 20. P. 1–11. DOI: 10.1186/s12859-019-3118-5.
22. Belova K.M., Sudakov V.A. Issledovanie effektivnosti metodov otsenki relevantnosti tekstov // Preprinty IPM im. M.V. Keldysha. 2020. N 68. 16 p.
23. Carass A., Roy S., Gherman A., Reinhold J.C., Jesson A., Arbel T., Maier O., Handels H., Ghafoorian M., Platel B., Birenbaum A., Greenspan H., Pham D.L., Crainiceanu C.M., Calabresi P.A., Prince J.L., Gray Roncal W.R., Shinohara R.T., Oguz I. Evaluating white matter lesion segmentations with refined sorensen-dice analysis // Sci. Rep. 2020. V. 10. P. 1–19. DOI: 10.1038/s41598-020-64803-w.
24. Millie D.F., Schofield O.M.E., Kirkpatrick G.J., Johnsen G., Evens T.J. Using absorbance and fluorescence spectra to discriminate microalgae // Eur. J. Phycol. 2002. V. 37. P. 313–322. DOI: 10.1017/S0967026202003700.
25. Tofallis C. Least squares percentage regression // J. Mod. Appl. Stat. Methods. 2008. V. 7. P 526–534. DOI: 10.22237/jmasm/1225513020.