Vol. 36, issue 12, article # 2

Rodimova O. B. Calculation of the absorption coefficient of the Ar-broadened CO2 in the 4.3 mm band wing on the basis of the asymptotic line wing theory. // Optika Atmosfery i Okeana. 2023. V. 36. No. 12. P. 970–974. DOI: 10.15372/AOO20231202 [in Russian].
Copy the reference to clipboard


Carbon dioxide absorption broadened by argon is studied on the basis of the asymptotic line wing theory. The line shape parameters concerned with the classical potential governing the center-of-mass motion and the quantum intermolecular interaction potential are found. The temperature dependence of the CO2–Ar absorption beyond the 4.3 mm band edge is explained through changes in the classical potential describing the temperature behavior of the second virial coefficient in the temperature region under study.


carbon dioxide, the Ar broadening, spectral line wings, second virial coefficient


1. Winters B.H., Silverman S., Benedict W.S. Line shape in the wing beyond the band head of the 4.3 mm band of CO2 // J. Quant. Spectrosc. Radiat. Transfer. 1964. V. 4, N 4. P. 527–537.
2. Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines // J. Opt. Soc Amer. 1969. V. 59, N 3. P. 267–280.
3. Dokuchaev A.B., Tonkov M.V. Opredelenie formy kryl'ev kolebatel'no-vrashchatel'nyh linij polosy dvuokisi ugleroda // Opt. i spektroskop. 1980. V. 48, iss. 4. P. 738–744.
4. Santarov H., Tonkov M.V. Issledovanie IK-pogloshcheniya v kryle kolebatel'no-vrashchatel'noj polosy n3 SO2 // Opt. i spektroskop. 1983. V. 54. P. 944–946.
5. Bulanin M.O., Dokuchaev A.B., Tonkov M.V., Filipov N.N. Influence of the line interference on the vibratio-rotation band shapes // J. Quant. Spectrosc. Radiat. Transfer. 1984. V. 31, N 6. P. 521–543.
6. Bulanin M.O., Tonkov M.V., Filippov N.N. Study of collision-induced rotational perturbations in gases via the wing shape of infrared bands // Can. J. Phys. 1984. V. 62. P. 1306–1314.
7. Boissoles J., Menoux V., Le Doucen R., Boulet C., Robert D. Collisionally induced population transfer effects in infrared absorption spectra. II. The wing of the Ar-broadened n3 band of CO2 // J. Chem. Phys. 1989. V. 91, N 4. P. 2163–2171.
8. Boissoles J., Boulet C., Hartmann J.M., Perrin M.Y., Robert D. Collision-induced population transfer in infrared absorption spectra. III. Temperature dependence of absorption in the Ar-broadened wing of CO2 n3 band // J. Chem. Phys. 1990. V. 93, N 4. P. 2217–2221.
9. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekulyarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 216 p.
10. Tvorogov S.D., Rodimova O.B. Stolknovitel'nyj kontur spektral'nyh linij. Tomsk: Izd-vo IOA SO RAN, 2013. 196 p.
11. Tran H., Boulet C., Stefani S., Snels M., Piccioni G. Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1. I – Central and wing regions of the allowed vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 6. P. 925–936.
12. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Koeffitsient pogloshcheniya v mikrooknah polos uglekislogo gaza // Izv. vuzov. Fiz. 1982. Iss. 5. P. 54–58.
13. Telegin G.V., Fomin V.V. Raschet koeffitsienta pogloshcheniya v spektre SO2. Mikrookna prozrachnosti i periferiya polosy 4.3 mm, ushirenie argonom i geliem // Opt. i spektroskop. 1982. V. 52, iss. 2. P. 247–252.
14. Hartmann J.-M., Ha Tran, Armante R., Boulet C., Campargue A., Forget F., Gianfrani L., Gordon I., Guerlet S., Gustafsson M., Hodges J.T., Kassi S., Lisak D., Thibault F., Toon G.C. Recent advances in collisional effects on spectra of molecular gases and their practical consequences // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 213. P. 178–227.
15. Tvorogov S.D., Rodimova O.B., Nesmelova L.I. Spektral'nyj obmen i periferiya kontura spektral'nyh linij. Kriticheskij obzor // Optika atmosf. 1990. V. 3, N 5. P. 468–484.
16. Ivanov S.V., Buzykin O.G. Precision considerations of classical and semiclassical methods used in collision line broadening calculations: Different linear molecules perturbed by argon // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 119. P. 84–94.
17. Hartmann J.-M., Boulet C., Tran H., Nguyen M.T. Molecular dynamics simulations for CO2 absorption spectra. I. Line broadening and the far wing of the n3 infrared band // J. Chem. Phys. 2010. V. 133, N 14. P. 144313-1–144313-6.
18. Girshfel'der Dzh., Kertiss Ch., Berd R. Molekulyarnaya teoriya gazov i zhidkostej. M.: Inostrannaya literatura, 1961. 930 p.
19. Gordov E.P., Tvorogov S.D. Metod poluklassicheskogo predstavleniya kvantovoj teorii. Novosibirsk: Nauka, 1984. 167 p.
20. Hutson J.M., Ernesti A., Law M.M., Roche C.F., Wheatley R.J. The intermolecular potential energy surface for CO2–Ar: Fitting to high-resolution spectroscopy of Van der Waals complexes and second virial coefficients // J. Chem. Phys. 1996. V. 105, N 20. P. 9130–9140.
21. Rodimova O.B. Koeffitsient pogloshcheniya v kryle 1–0 polosy SO pri ushirenii geliem // Optika atmosf. i okeana. 2020. V. 33, N 9. P. 663–667; Rodimova O.B. Absorption coefficient in the 1–0 CO band wing broadened by helium // Atmos. Ocean. Opt. 2021. V. 34, N 5. P. 390–394.
22. Le Doucen R., Cousin C., Boulet C., Henry A. Temperature dependence of the absorption in the region beyond the 4.3 mm band of CO2. I: Pure CO2 case // Appl. Opt. 1985. V. 24, N 6. P. 897–906.
23. Boulet С., Boissoles J., Robert D. Collisionally induced population transfer effects in infrared absorption spectra. I. A line-by-line coupling theory from resonances to the far wing // J. Chem. Phys. 1988. V. 89, N 2. P. 625–634.