Vol. 36, issue 11, article # 8

Vinogradov N. P., Tarasenko V. F. Effect of relative air humidity on the properties of diffuse plasma jets. // Optika Atmosfery i Okeana. 2023. V. 36. No. 11. P. 928–933. DOI: 10.15372/AOO20231108 [in Russian].
Copy the reference to clipboard

Abstract:

The paper is devoted to the study of the effect of relative air humidity on the color of diffuse plasma jets (DPJs) initiated by a capacitive discharge at pressures of 0.03–1 torr, which are analogues of columnar sprites. Photographs and emission spectra of DPJs are given, as well as a photograph of a sprite. The results of the study showed that a decrease in the relative air humidity at pressures less than 0.1 torr contributes to the preservation of the red color of DPJs. Quantifying the average number of red and blue pixels in the photographs confirms this result. It has been established that an increase in the reduced electric field leads to a change in the color and spectrum of the periodic domain structure due to an increase in the intensity of the emission of the bands of the first negative nitrogen system.

Keywords:

atmospheric air, low pressure discharges, capacitive discharge, plasma diffuse jet, analogs column sprite

Figures:

References:

1. Sentman D.D., Wescott E.M. Red sprites and blue jets: Thunderstorm – excited optical emissions in the stratosphere, mesosphere, and ionosphere // Phys. Plasmas. 1995. V. 2, N 6. P. 2514–2522. DOI: 10.1063/1.871213.
2. Rodger C.J. Red sprites, upward lightning, and VLF perturbations // Rev. Geophys. 1999. V. 37, N 3. P. 317–336. DOI: 10.1029/1999RG900006.
3. Pasko V.P. Red sprite discharges in the atmosphere at high altitude: The molecular physics and the similarity with laboratory discharges // Plasma Sources Sci. Technol. 2007. V. 16, Art. N S13. DOI: 10.1088/0963-0252/16/1/S02.
4. Williams E., Valente M., Gerken E., Golka R. Sprites, Elves and Intense Lightning Discharges. Springer. 2006. P. 237–251.
5. Stenbaek-Nielsen H.C., McHarg M.G., Kanmae T., Sentman D.D. Observed emission rates in sprite streamer heads // Geophys. Res. Lett. 2007. V. 34, Art. N L11105. DOI: 10.1029/2007GL02988111.
6. McHarg M.G., Stenbaek-Nielsen H.C., Kammae T. Observed emission rates in sprite streamer heads // Geophys. Res. Lett. 2007. V. 34. Art. N L06804. DOI: 10.1029/2007GL029881.
7. Kanmae T., Stenbaek-Nielsen H.C., McHarg M.G., Haaland R.K. Diameter-speed relation of sprite streamers // J. Phys. D: Appl. Phys. 2012. V. 45, N 27. Art. N 275203. DOI: 10.1088/0022-3727/45/27/275203.
8. Pasko V.P., Yair Y., Kuo C.L. Lightning related transient luminous events at high altitude in the Earth’s atmosphere: Phenomenology, mechanisms and effects // Space Sci. Rev. 2012. V. 168, N 1. P. 475–516.
9. Singh M., Sharma P.K., Pathak P.P. Radiation phenomenon due to streamers of sprites // J. Electromag. Analysis Appl. 2022. V. 14, N 3. P. 31–37. DOI: 10.4236/jemaa.2022.143003.
10. Franz R.C., Nemzek R.J., Winckler J.R. Television image of a large upward electrical discharge above a thunderstorm system // Science. 1990. V. 249. P. 48–51. DOI: 10.1126/science.249.4964.48.
11. Sentman D.D., Wescott E.M., Osborne D.L., Hampton D.L., Heavne M.J. Preliminary results from the Sprites 94 Aircraft Campaign: 1. Red sprites // Geophys. Res. Lett. 1995. V. 22, N 10. P. 1205–1208. DOI: 10.1029/95GL00583.
12. Garipov G.K., Khrenov B.A., Klimov P.A., Klimenko V.V., Mareev E.A., Martines O., Mendoza E., Morozenko V.S., Panasyuk M.I., Park I.H., Ponce E., Rivera L., Salazar H., Tulupov V.I., Vedenkin N.N., Yashin I.V. Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite // J. Geophys. Res. Atmos. 2013. V. 118, N 2. P. 370–379. DOI: 10.1029/2012JD017501.
13. Jehl A., Farges T., Blanc E. Color pictures of sprites from non-dedicated observation on board the International Space Station // J. Geophys. Res.: Space Phys. 2013. V. 118. P. 454–461.
14. Neubert T., Ostgaard N., Reglero V., Blanc E., Chanrion O., Oxborrow C.A., Orr A., Tacconi M., Hartnack O., Bhanderi D.D.V. The ASIM Mission on the International Space Station // Space Sci. Rev. 2019. V. 215, N 2. P. 1–17. DOI: 10.1007/s11214-019-0592-z.
15. Pizzuti A., Bennett A., Soula S., Amor S.N., Mlynarczyk J., Füllekrug M., Pédeboy S. On the relationship between lightning superbolts and TLEs in Northern Europe // Atmos. Res. 2022. V. 270, Art. N 106047. DOI: 10.1016/j.atmosres.2022. 106047.
16. Neubert T., Rycroft M., Farges T., Blanc E., Chanrion O., Arnone E., Odzimek A., Arnold N., Enell C.-F., Turunen E., Bösinger T., Mika Á., Haldoupis C., Steiner R.J., Velde O. van der, Soula S., Berg P., Boberg F., Thejll P., Christiansen B., Ignaccolo M., Füllekrug M., Verronen P.T., Montanya J., Crosby N. Recent results from studies of electric discharges in the mesosphere // Surveys Geophys. 2008. V. 29, N 2. P. 71–137. DOI: 10.1007/s10712-008-9043-1.
17. Stenbaek-Nielsen H.C., Haaland R., McHarg M.G., Kanmae T. Sprite initiation altitude measured by triangulation // J. Geophys. Res.: Space Phys. 2010. V. 115, N A8. DOI: 10.1029/2009JA014850.
18. Qin J., Celestin S., Pasko V.P., Cummer S.A., McHarg M.G., Stenbaek-Nielsen H.C. Mechanism of column and carrot sprites derived from optical and radio observations // Geophys. Res. Lett. 2013. V. 40, N 17. P. 4777–4782. DOI: 10.1002/grl.50910.
19. Malagon-Romero A., Teunissen J., Stenbaek-Nielsen H.C., McHarg M.G., Ebert U., Luque A. On the emergence mechanism of carrot sprites // Geophys. Res. Lett. 2020. V. 47, Art. N e2019GL085776. DOI: 10.1029/2019GL085776.
20. Pasko V.P., Qin J., Celestin S. Toward better understanding of sprite streamers: Initiation, morphology, and polarity asymmetry // Surveys Geophys. 2013. V. 34, N 6. P. 797–830.
21. Vaughan O.H., Blakeslee Jr.R., Broeck W.L., Vonnegut B., Brook M., McKune J.Jr. A cloud-to-space lightning as recorded by the space shuttle payload bay camera // Mon. Weather Rev. 1992. V. 35. P. 1459–1461. DOI: 10.1175/1520-0493(1992)12<1459:ACTSLA>2.0.CO;2.
22. Sentman D.D., Wescott E.M. Observations of atmospheric optical flashes recorded from an aircraft // Geophys. Res. Lett. 1993. V. 20. P. 2857–2860. DOI: 10.1029/93GL02998.
23. Goto Y., Ohba Y., Narita K. Optical and spectral characteristics of low pressure air discharges as sprite models // J. Atmos. Electricity. 2007. V. 27, N 2. P. 105–112. DOI: 10.1541/jae.27.105.
24. Sosnin E.A., Babaev N.Yu., Kozhevniko V.Yu., Kozyrev A.V., Naidis G.V., Panarin V.A., Skakun V.S., Tarasenko V.F. Modelirovanie tranzientnyx svetovyh yavlenii srednei atmosfery Zemli c pomoshch'yu apokampicheskogo razryada // Uspehi fiz. nauk. 2021. V. 191, N 2. P. 199–219. DOI: 10.3367/UFNr.2020.03.038735.
26. Arcanjo M., Montanya J., Urbani M., Lorenzo V. Optical signatures associated with streamers and leaders of laboratory discharges // Geophys. Res. Lett. 2021. V. 48. Art. N e2021GL095601. DOI: 10.1029/ 2021GL095601.
26. Opaits D.F., Shneider M.N., Howard P.J., Miles R.B., Milikh G.M. Study of streamers in gradient density air: Table top modeling of red sprites // Geophys. Res. Lett. 2010. V. 37, Art. N L14801. DOI: 10.1029/2010GL043996.
27. Tarasenko V., Vinogradov N., Baksht E., Sorokin D. Ionization waves, propagating in opposite directions, as in red sprites // J. Atmos. Sci. Res. 2022. V. 5, N 4. P. 26–36. DOI: 10.24018/ejgeo.2022.3.6.322.
28. Baksht E.H., Vinogradov N.P., Tarasenko V.F. Formirovanie strimerov v neodnorodnom elektricheskom pole pri nizkih davleniyah vozduha // Optika atmosf. i okeana. 2022. V. 35, N 9. P. 777–781. DOI: 10.15372/AOO20220911; Baksht E.K., Vinogradov N.P., Tarasenko V.F. Generation of streamers in an inhomogeneous electric field under low air pressure // Atmos. Ocean. Opt. 2022. V. 35, N S1. P. S159–S164. DOI: 10.15372/AOO20220911.
29. Tarasenko V.F., Baksht E.H., Vinogradov N.P. Modelirovanie krasnyh spraitov s pomoshch'yu emkostnogo razryada // Prikladnaya fizika. 2022. N 4. P. 11–17. DOI: 10.51368/1996-0948-2022-4-11-17.
30. Tarasenko V.F., Baksht E.H., Vinogradov N.P., Sorokin D.A. Spektry izlucheniya vozduha nizkogo davleniya pri diffuznom strimernom razryade // Optika i spektroskopiya. 2022. V. 130, N 12. P. 1769–1777. DOI: 10.21883/OS.2022.12.54080.4014-22.
31. Tarasenko V.F., Baksht E.H., Panarin V.A., Vinogradov N.P. Strimery, initsiiruemye emkostnym razryadom pri davleniyah vozduha 0.2–6 torr // Fizika plazmy. 2023. V. 49, N 6. P. 590–599. DOI: 10.31857/S0367292123700245, EDN: WYLTGE.
32. Yue J., Russell J., Gan Q., Wang T., Rong P., Garcia R., Mlynczak M. Increasing water vapor in the stratosphere and mesosphere after 2002 // Geophys. Res. Lett. 2019. V. 46, N 22. P. 13452–13460. DOI: 10.1029/2019GL084973.