Vol. 36, issue 11, article # 7
Copy the reference to clipboard
Abstract:
The article studies a single thundercloud that developed at night near the coast of the Gulf of Finland. Using three meteorological radars, two lightning detection systems, and a 3D numerical model, the physical processes that caused its electrification are analyzed. It is shown that the first lightning occurred during the period when there was a small area containing graupel particles in the upper part of the cloud. Updrafts played an important role in the formation of this area and the microstructure of the cloud, as shown both by radar observations and numerical simulation. Further intensification of thunderstorm activity is associated with an increase in the cloud volume with graupel and hail. Analysis of the charge values of individual cloud fractions based on the results of numerical simulation showed that hailstones are the main carriers of the negative charge.
Keywords:
thunderstorm, lightning, radar characteristics, numerical modeling, microphysical structure
Figures:
References:
1. Chang J., Gu J., Ji F., Chang F., Sayit H. Relationship between microphysical properties of convective clouds and lightning activity in a typical thunderstorm in Sichuan Basin // Pol. J. Environ. Stud. 2020. V. 30, N 1. P. 571–583. DOI: 10.15244/pjoes/123291.
2. Pessi A.T., Businger S. Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean // J. Appl. Meteorol. Climatol. 2009. V. 48, N 4. P. 833–848. DOI: 10.1175/2008JAMC1817.1.
3. Sin'kevich A.A., Mihailovskii Yu.P., Matrosov S.Yu., Popov V.B., Snegurov V.S., Snegurov A.V., Dovgalyuk Yu.A., Veremei N.E. Svyaz' struktury konvektivnyh oblakov s chastotoi molnii po rezul'tatam radiofizicheskih izmerenii // Meteorol. i gidrol. 2019. N 6. P. 37–51.
4. Sin’kevich A.A., Popov V.B., Mikhailovskii Yu.P., Toropova M.L., Dovgalyuk Yu.A., Veremei N.E., Starykh D.S. Kharakteristiki kuchevo-dozhdevogo oblaka s vodyanym smerchem nad Ladozhskim ozerom po dannym distantsionnyh izmerenii // Optika atmosf. i okeana. 2020. V. 33, N 2. P. 153–158; Sin’kevich A.A., Popov V.B., Mikhailovskii Yu.P., Toropova M.L., Dovgalyuk Yu.A., Veremei N.E., Starykh D.S. Characteristics of cumulonimbus with waterspout over Ladoga Lake from remote measurements // Atmos. Ocean. Opt. 2020. V. 33, N 4. P. 387–392.
5. Qie X., Zhang Y. A review of atmospheric electricity research in China from 2011 to 2018 // Adv. Atmos. Sci. 2019. V. 36. P. 994–1014. DOI: 10.1007/s00376-019-8195-x.
6. Deierling W., Petersen W.A., Latham J., Ellis S., Christianet H. The relationship between lightning activity and ice fluxes in thunderstorms // J. Geophys. Res. 2008. V. 113, N D15. P. D15210. DOI: 10.1029/2007JD009700.
7. Davini P., Bechini R., Cremonini R., Cassardo C. Radar-based analysis of convective storms over Northwestern Italy // Atmosphere. 2012. V. 3, N 1. P. 33–58. DOI: 10.3390/atmos3010033.
8. Sun J., Chai J, Leng L., Xu G. Analysis of lightning and precipitation activities in three severe convective events based on Doppler radar and microwave radiometer over the Central China Region // Atmosphere. 2019. V. 10, N 6. P. 298. DOI: 10.3390/atmos10060298.
9. Veremei N.E., Dovgalyuk Yu.A., Zatevahin M.A., Ignat'ev A.A., Morozov V.N., Pastushkov R.S. Opisanie bazovoi chislennoi nestatsionarnoi trehmernoi modeli konvektivnogo oblaka // Trudy GGO. 2016. Iss. 582. P. 45–91.
10. Pavlyukov Yu.B., Korenev D.P., Travov A.V. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM N 2018665447 Rossiiskaya Federatsiya. Programmnyi kompleks vtorichnoi obrabotki informatsii doplerovskogo meteorologicheskogo radiolokatora DMRL-S (shifr «GIMET-2010») versiya 02, N 2018662687, opubl. 05.12.2018; zayavitel' FGBU «TsAO».
11. Avtomatizirovannye meteorologicheskie radiolokatsionnye kompleksy «Meteoyacheika» / pod red. N.V. Bocharnikova, G.B. Bryleva i dr. SPb.: Gidrometeoizdat. 2007. 238 p.
12. Mihailovskii Yu.P., Toropova M.L., Veremei N.E. Dovgalyuk Yu.A., Sin'kevich A.A., Yang Dzh., Lu Dzh. Dinamika elektricheskoi struktury kuchevo-dozhdevyh oblakov // Izv. vuzov. Radiofiz. 2021. V. 64, N 5. P. 341–353.
13. Fazovyi analizator grozoopasnosti FAG-2N. URL: http://www.digital-dragon.ru/products/testing-equipment/thunder-analyser/ (data obrashcheniya: 6.03.2023).
14. Xu W., Zipser E.J., Liu C., Jiang H. On the relationships between lightning frequency and thundercloud parameters of regional precipitation systems // J. Geophys. Res. 2010. V. 115. P. D12203. DOI: 10.1029/2009JD013385.
15. Takahashi T. Riming electrification as a charge generation mechanism in thunderstorms // J. Atmos. Sci. 1978. V. 35. P. 1536–1548. DOI: 10.1175/1520-0469(1978)035<1536:REAACG> 2.0.CO;2.
16. Matrosov S.Y., Cifelli R., Kennedy P.C., Nesbitt S.W., Rutledge S.A., Bringi V.N., Brooks E. A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S-band radar frequencies // J. Atmos. Ocean. Technol. 2006. V. 23. P. 952–963. DOI: 10.1175/JTECH1887.1
17. Bringi V.N., Chandrasekar V. Polarimetric Doppler Weather Radar. Cambridge: Cambridge University Press, 2001. 636 p.
18. Dolan B., Rutledge S.A., Lim S., Chandrasekar V., Thurai M. A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset // J. Appl. Meteorol. Climatol. 2013. V. 52, N 9. P. 2162–2186. DOI: 10.1175/JAMC-D-12- 0275.1.
19. Kumjian M.R. Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications // J. Operational Meteorol. 2013. V. 1, N 20. P. 243–264. DOI: 10.15191/nwajom.2013.0120.
20. Rigo T., Farnell Barqué C. Evaluation of the radar echo tops in Catalonia: Relationship with severe weather // Remote Sens. 2022. V. 14. P. 6265. DOI: 10.3390/rs14246265.
21. Farnell C., Rigo T., Pineda N. Exploring radar and lightning variables associated with the lightning jump. Can we predict the size of the hail? // Atmos. Res. 2018. V. 202. P. 175–186. DOI: 10.1016/j.atmosres.2017.11.019.