Vol. 36, issue 11, article # 12

Hongda Li., Konovalov I. N., Panchenko Yu. N., Puchikin A. V., Andreev M. V., Bobrovnikov S. M. Pulsed CO2 laser pumped by a longitudinal discharge in an alternating magnetic field. // Optika Atmosfery i Okeana. 2023. V. 36. No. 11. P. 953–957. DOI: 10.15372/AOO20231112 [in Russian].
Copy the reference to clipboard

Abstract:

An original technique for pumping a pulsed CO2 laser with a longitudinal discharge in an alternating magnetic field is proposed and implemented. Based on this technique proposed technique, a small CO2 laser with an active   medium length of ~ 200 mm, a pulse energy of ~ 30 mJ, and an efficiency of 3.4% is designed. It is revealed that the main factor which limits the generation energy of small lasers is the development of current instabilities in a longitudinal discharge across a cross section of the discharge tube. It is noted that the growth of instabilities accelerates with increasing pressure of a CO2 : N2 : H2 : He gas mixture to more than 0.1 atm and the specific pump power to more than 3 MW/cm3. The use of an external alternating magnetic field superimposed on a pulsed longitudinal discharge makes it possible to increase the total pressure of the gas mixture in the laser to 0.4 atm while maintaining the combustion of the volume discharge.

Keywords:

CO2 laser, longitudinal discharge, magnetic field, radiation

References:

1. Webber M.E., Pushkarsky M., Patel C.K. Optical detection of chemical detection of chemical warfare agents and toxic industrial chemicals: Simulation // J. Appl. Phys. 2005. V. 97, N 11. P. 113–124.
2. Ivashchenko M.V., Sherstov I.V. Dal'nost' deistviya lidara differentsial'nogo pogloshcheniya na osnove CO2-lazera // Kvant. elektron. 2000. V. 30, N 4. P. 747–752.
3. Gorobets V.A., Petuhov V.O., Tochitskii S.Ya., Churakov V.V. Perestraivaemyi po liniyam obychnyh i netraditsionnyh polos TE СО2-lazer dlya lidarnyh sistem // Kvant. elektron. 1995. V. 22, N 5. P. 514–518.
4. Panchenko Yu.N., Losev V.F., Puchikin А.V., Jun Y. The TEA CO2 lasers with high output emission intensity // Russ. Phys. J. 2014. V. 56, N 11. P. 1246–1249.
5. Chung H.J., Lee D.H., Hong J.H., Joung J.H., Sung Y.M., Park S.J., Kim H.J. A simple pulsed CO2 laser with long milliseconds pulse duration // Rev. Sci. Instrum. 2002. V. 73, N 2. P. 484–485.
6. Uno K., Nakamura K., Goto T., Jitsuno T. Longitudinally excited CO2 laser with short laser pulse like TEA CO2 laser // J. Infrared, Millimeter, Terahertz Waves. 2009. V. 30, N 11. P. 1123–1130.
7. Baksht E.H., Panchenko A.N., Tarasenko V.F. Discharge lasers pumped by generators with inductive energy storage // IEEE J. Quant. Electron. 1999. V. 35, N 3. P. 261–266.
8. Bethel J.W., Baker H.J., Hall D.R. A new scalable annular CO2 laser with high specific output power // Opt. Commun. 1998. V. 125. P. 352–358.
9. Uno K., Nakamura K., Goto T., Jitsuno T. Simple short-pulse CO2 laser excited by longitudinal discharge without high-voltage switch // J. Infrared, Millimeter, Terahertz Waves. 2012. V. 33, N 5. P. 485–490.
10. Uno K., Dobashi K., Akitsu T. Simple short-pulse CO2 laser excited by longitudinal discharge without high-voltage switch // J. Infrared, Millimeter, Terahertz Waves. 2012. V. 33, N 5. P. 485–490.
11. Gazorazryadnoe ustroistvo s prodol'no-poperechnym razryadom: Pat. RU 206537 U1. Russia, MPK H01S 3/0975. I.N. Konovalov, Yu.N. Panchenko, V.F. Losev, A.V. Puchikin; 2021113333, 2021.05.11.
12. Манучарян Р.Г., Мхитарян В.М., Геворкян Г.С. Импульсно-периодические индукционные газовые лазеры с поперечным разрядом // Сб. трудов конференции «Лазерная физика-2004». Аштарак, Армения, 2005. P. 83–84.
13. Razhev A.M., Churkin D.S., Tkachenko R.A. MW peak-power UV inductive nitrogen laser // Appl. Phys. B. 2020. V. 126, N 6.
14. Azotnyi lazer, vozbuzhdaemyi prodol'nym elektricheskim razryadom: Pat. RU 2664780 S1, Russia, MPK H01S 3/038. Yu.N. Panchenko, I.N. Konovalov, V.F. Losev, A.V. Puchikin, 2017139170, 2017.11.10.
15. Alekseev S.B., Orlovskii V.M., Tarasenko V.F., Tkachev A.N., Yakovlenko S.I. Electron beam formation in atmospheric pressure gases and its application for discharge preionization in a CO2 laser // Laser Phys. 2004. V. 14, N 6. P. 795–808.