Vol. 36, issue 11, article # 12

Hongda Li., Konovalov I. N., Panchenko Yu. N., Puchikin A. V., Andreev M. V., Bobrovnikov S. M. Pulsed CO2 laser pumped by a longitudinal discharge in an alternating magnetic field. // Optika Atmosfery i Okeana. 2023. V. 36. No. 11. P. 953–957. DOI: 10.15372/AOO20231112 [in Russian].
Copy the reference to clipboard


An original technique for pumping a pulsed CO2 laser with a longitudinal discharge in an alternating magnetic field is proposed and implemented. Based on this technique proposed technique, a small CO2 laser with an active   medium length of ~ 200 mm, a pulse energy of ~ 30 mJ, and an efficiency of 3.4% is designed. It is revealed that the main factor which limits the generation energy of small lasers is the development of current instabilities in a longitudinal discharge across a cross section of the discharge tube. It is noted that the growth of instabilities accelerates with increasing pressure of a CO2 : N2 : H2 : He gas mixture to more than 0.1 atm and the specific pump power to more than 3 MW/cm3. The use of an external alternating magnetic field superimposed on a pulsed longitudinal discharge makes it possible to increase the total pressure of the gas mixture in the laser to 0.4 atm while maintaining the combustion of the volume discharge.


CO2 laser, longitudinal discharge, magnetic field, radiation


1. Webber M.E., Pushkarsky M., Patel C.K. Optical detection of chemical detection of chemical warfare agents and toxic industrial chemicals: Simulation // J. Appl. Phys. 2005. V. 97, N 11. P. 113–124.
2. Ivashchenko M.V., Sherstov I.V. Dal'nost' deistviya lidara differentsial'nogo pogloshcheniya na osnove CO2-lazera // Kvant. elektron. 2000. V. 30, N 4. P. 747–752.
3. Gorobets V.A., Petuhov V.O., Tochitskii S.Ya., Churakov V.V. Perestraivaemyi po liniyam obychnyh i netraditsionnyh polos TE СО2-lazer dlya lidarnyh sistem // Kvant. elektron. 1995. V. 22, N 5. P. 514–518.
4. Panchenko Yu.N., Losev V.F., Puchikin А.V., Jun Y. The TEA CO2 lasers with high output emission intensity // Russ. Phys. J. 2014. V. 56, N 11. P. 1246–1249.
5. Chung H.J., Lee D.H., Hong J.H., Joung J.H., Sung Y.M., Park S.J., Kim H.J. A simple pulsed CO2 laser with long milliseconds pulse duration // Rev. Sci. Instrum. 2002. V. 73, N 2. P. 484–485.
6. Uno K., Nakamura K., Goto T., Jitsuno T. Longitudinally excited CO2 laser with short laser pulse like TEA CO2 laser // J. Infrared, Millimeter, Terahertz Waves. 2009. V. 30, N 11. P. 1123–1130.
7. Baksht E.H., Panchenko A.N., Tarasenko V.F. Discharge lasers pumped by generators with inductive energy storage // IEEE J. Quant. Electron. 1999. V. 35, N 3. P. 261–266.
8. Bethel J.W., Baker H.J., Hall D.R. A new scalable annular CO2 laser with high specific output power // Opt. Commun. 1998. V. 125. P. 352–358.
9. Uno K., Nakamura K., Goto T., Jitsuno T. Simple short-pulse CO2 laser excited by longitudinal discharge without high-voltage switch // J. Infrared, Millimeter, Terahertz Waves. 2012. V. 33, N 5. P. 485–490.
10. Uno K., Dobashi K., Akitsu T. Simple short-pulse CO2 laser excited by longitudinal discharge without high-voltage switch // J. Infrared, Millimeter, Terahertz Waves. 2012. V. 33, N 5. P. 485–490.
11. Gazorazryadnoe ustroistvo s prodol'no-poperechnym razryadom: Pat. RU 206537 U1. Russia, MPK H01S 3/0975. I.N. Konovalov, Yu.N. Panchenko, V.F. Losev, A.V. Puchikin; 2021113333, 2021.05.11.
12. Манучарян Р.Г., Мхитарян В.М., Геворкян Г.С. Импульсно-периодические индукционные газовые лазеры с поперечным разрядом // Сб. трудов конференции «Лазерная физика-2004». Аштарак, Армения, 2005. P. 83–84.
13. Razhev A.M., Churkin D.S., Tkachenko R.A. MW peak-power UV inductive nitrogen laser // Appl. Phys. B. 2020. V. 126, N 6.
14. Azotnyi lazer, vozbuzhdaemyi prodol'nym elektricheskim razryadom: Pat. RU 2664780 S1, Russia, MPK H01S 3/038. Yu.N. Panchenko, I.N. Konovalov, V.F. Losev, A.V. Puchikin, 2017139170, 2017.11.10.
15. Alekseev S.B., Orlovskii V.M., Tarasenko V.F., Tkachev A.N., Yakovlenko S.I. Electron beam formation in atmospheric pressure gases and its application for discharge preionization in a CO2 laser // Laser Phys. 2004. V. 14, N 6. P. 795–808.