Vol. 36, issue 11, article # 11

Bol'basova L. A., Borzilov A. G., Kazakov D. V., Lukin V. P., Soin E. L. Measurements of atmospheric parameters on extended paths. III. Experimental tests of the adaptive optics system prototype. // Optika Atmosfery i Okeana. 2023. V. 36. No. 11. P. 946–952. DOI: 10.15372/AOO20231111 [in Russian].
Copy the reference to clipboard

Abstract:

This work continues the series of experimental studies of fluctuations of the parameters of optical waves along extended paths. In this part, we study possibilities of using an adaptive optics system for focusing laser radiation along long paths in the atmosphere. The adaptive optics system is described, which is part of a hybrid system that provides focusing of a laser radiation beam along an extended atmospheric path. A focusing system, which uses a Shack–Hartmann wavefront sensor, a deformable controllable mirror, and a wavefront tilt corrector implements a phase conjugation algorithm based on a signal from a point reference source. To accompany the experiment, optical and acoustic meters of the level of turbulence and wind speed were used. The results show both opportunities and limitations for the efficient operation of the system on a long turbulent path.

Keywords:

adaptive optics, turbulence, phase, optical wave, correction

Figures:

References:

1. Babcock W. The possibility of compensating astronomical seeing // Publ. Astron. Soc. Pac. 1953. V. 65. P. 229–236.
2. Linnik V.P. O printsipial'noi vozmozhnosti umen'sheniya vliyaniya atmosfery na izobrazhenie zvezdy // Opt. i spektroskop. 1957. N 4. P. 401–402.
3. Lukin V.P. Atmosfernaya adaptivnaya optika. Novosibirsk: Nauka, 1986. 248 p.
4. Fotiadi A.A. All-fiber coherent combining of Er-doped amplifiers through refractive index control in Yb-doped fibers // Opt. Lett. 2009. V. 34, N 22. P. 3574–3576.
5. Vorontsov M.A. Adaptive array of phase-locked fiber collimators: Analysis and experimental demonstration // IEEE J. Sel. Top. Quantum Electronics. 2009. V. 15, N 2. P. 269–280.
6. Bellanger C. Coherent fiber combining by digital holography // Opt. Lett. 2008. V. 33, N 24. P. 2937–2939.
7. Xinyan Fan, Jingjiao Liu, Jinsheng Liu, Jingli Wu. Experimental investigation of a seven-element hexagonal fiber coherent array // Chinese Opt. Lett. 2010. V. 8, N 1. P. 48–51.
8. Gopinath J.T., Chann B., Fan T.Y., Sanchez-Rubio A. 1450-nm high-brightness wavelength-beam combined diode laser array // Opt. Express. 2008. V. 16, N 13. P. 9405–9409.
9. Wang B., Mies E., Minden M., Sanchez A. All-fiber 50 W coherently combined passive laser array // Opt. Lett. 2009. V. 34, N 7. P. 863–865.
10. Pu Zhou, Yanxing Ma, Xiaolin Wang, Haotong Ma, Jianhua Wang, Xiaojun Xu, Zejin Liu. Coherent beam combination of a hexagonal distributed high power fiber amplifier array // Appl. Opt. 2009. V. 48, N 33. P. 6537–6540.
11. Fried D.L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures // J. Opt. Soc. Am. 1966. N 56. P. 1372–1379.
12. Greenwood D. Special Issue on Adaptive Optics. J. Lincoln Lab. 1992. N 1. P. 3–170.
13. Buffington V., Crowford P.S., Muller K.A. Correction of atmospheric distortion with an image-sharpening telescope // J. Opt. Soc. Am. 1977. V. 67, N 3. P. 208.
14. Cathey V.T., Hayes C.L., David W.C., Pizzurro A.F. Compensation for atmospheric phase effects at 10.0 mm // Appl. Opt. 1970. V. 20, N 3. P. 701.
15. Lukin V.P., Charnotskii M.I. Printsip vzaimnosti i adaptivnoe upravlenie parametrami opticheskogo izlucheniya // Kvant. elektron. 1982. V. 9, N 5. P. 952–958.
16. Lukin V.P., Fortes B.V. Adaptivnoe formirovanie puchkov i izobrazhenii v atmosfere. Novosibirsk: Izd-vo SO RAN, 1999. 212 p. 
17. Lukin V.P., Fortes B.V. Phase-correction of turbulent distortions of an optical wave propagating under strong intensity fluctuations // Appl. Opt. 2002. V. 41, N 27. P. 5616–5624.
18. Lukin V.P., Kanev F.Yu., Sennikov V.A., Makenova N.A., Tartakovskii V.A., Konyaev P.A. Fazovoe i amplitudno-fazovoe upravlenie lazernym puchkom pri rasprostranenii ego v atmosfere // Kvant. elektron. 2004. V. 33, N 9. P. 825–832.
19. Barchers J.D. Evaluation of the impact of finite-resolution effects on scintillation compensation using two deformable mirrors // J. Opt. Soc. Am. A. 2001. V. 18, N 12. P. 3098–3109.
20. Zel'dovich B.Ya., Pilipetskii N.F. Obrashchenie volnovogo fronta. M.: Nauka, Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1985. 248 p.
21. Bespalov V.I., Pasmanik G.A. Nelineinaya optika i adaptivnye lazernye sistemy. M: Nauka, 1986. 134 p.
22. Saichev A.I. Otrazhenie ot zerkala, obrashchayushchego volnovoi front, s uchetom obratnogo rasseyaniya v neodnorodnoi srede // Izv. vuzov. Radiofiz. 1981. V. 24. P. 1165–1167.
23. Malahov A.I., Poloviikin A.V., Saichev A.I. O srednei intensivnosti volny otrazhennoi ot zerkala OVF v turbulentnoi srede // Izv. vuzov. Radiofiz. 1983. V. 26, N 5. P. 579–586.
24. Ahunov X.G., Bunkin F.V., Vlasov D.V., Kravtsov Yu.A. Ob effektivnosti fokusirovki obrashchennogo volnovogo polya v turbulentnoi atmosfere pri nalichii vetra // Izv. AN SSSR. Radiotehnika i elektronikа. 1984. V. 29, N 1. P. 1–4.
25. Andreev N.F., Bespalov V.I., Kiselyov A.M., Matveev A.Z., Pasmanik G.A., Shilov A.A. Obrashchenie opticheskih signalov s bol'shim koeffitsientom otrazheniya // Pis'ma v ZhETF. 1980. V. 32, iss. II. P. 639–642.
26. Khizhnyak A., Markov V. TIL system with nonlinear phase conjugation // Proc. SPIE. 2007. V. 6708. P. 67080H-1-5.
27. Khizhnyak A., Markov V., Chavez Joseph, Liu Sh. Beacon-defined performance of adaptive optics // Proc. SPIE. 2012. V. 8517. DOI: 10.1117/12.930631.
28. Lukin V.P., Kanev F.Yu., Kulagin O.V. Vozmozhnost' sovmestnogo ispol'zovaniya tehniki adaptivnoi optiki i nelineino-opticheskogo obrashcheniya volnovogo fronta dlya kompensatsii turbulentnyh iskazhenii // Kvant. elektron. 2016. V. 46, N 5. P. 481–486.
29. Lukin V.P., Botygina N.N., Konyaev P.A., Kulagin O.V., Gorbunov I.A. Sovmestnoe primenenie adaptivnoi optiki i nelineino-opticheskogo obrashcheniya volnovogo fronta dlya kompensatsii turbulentnyh iskazhenii pri fokusirovke lazernogo izlucheniya na udalennyh ob"ektah // Komp'yuternaya optika. 2020. V. 44, N 4. P. 519–532. DOI: 10.18287/2412-6179-CO-725 519.
30. Kulagin O.V., Pasmanik G.A., Shilov A.A. Usilenie i obrashchenie volnovogo fronta slabyh signalov // Uspehi fiz. nauk. 1992. V. 162, N 6. P. 129–157.
31. Weyrauch Th., Vorontsov M.A. Mitigation of atmospheric-turbulence effects over a 2.4-km near horizontal propagation path with 134 control-channel MEMS/VLSI adaptive transceiver system // Proc. SPIE. 2003. V. 5162. DOI: 10.1117/12.508080.
32. Baker K.L., Stappaerts Е.А., Gavel D., Wilks S.C., Tucker J., Silva D.A., Olsen J., Olivier S.S., Young P.E., Kartz M.W., Flath L.M., Kruelevitch P., Crawford J., Azucena O. High-speed horizontal-path atmospheric turbulence correction with a large-actuator-number microelectromechanical system spatial light modulator in an interferometric phase-conjugation engine // Opt. Lett. 2004. V. 29, N 15. P. 1781–1783.
33. Mackey R., Dainty Ch. Adaptive optics correction over a 3 km near horizontal path // Proc. SPIE. 2008. V. 7108. P. 71080I-1.
34. Wu-Ming Wu, Yu N. Angular anisoplanatism of a focused beam using beacons over horizontal path // Proc. SPIE. 2015. V. 9796. 97960J. DOI: 10.1117/12.2230627.
35. Brady A., Leonhard N., Rosler C., Gier M., Bottner P., Reinlein C. Demonstrated pre-compensation of a focused laser beam with up to 0.27 mrad point-ahead-angle over a 1-km horizontal communication path // Proc. ICSO. 2019. V. 11180. P. 111801E.
36. Botygina N.N., Emaleev O.N., Konyaev P.A., Lukin V.P. Wavefront sensors for adaptive optical systems // Meas. Sci. Rev. 2010. V. 10, N 3. P. 101–106.
37. Gurvich A.S., Kon A.I., Mironov V.L., Khmelevtsov S.S. Lazernoe izluchenie v turbulentnoi atmosfere. M.: Nauka, 1976. 277 p.
38. Shanin O.I. Adaptivnye opticheskie sistemy korrektsii naklonov. Rezonansnaya adaptivnaya optika. M.: Tehnosfera, 2013. 296 p.
39. Andreeva M.S., Iroshnikov N.G., Koryabin A.V., Larichev A.V., Shmal'gauzen V.I. Ispol'zovanie datchika volnovogo fronta dlya otsenki parametrov atmosfernoi turbulentnosti // Avtometriya. 2012. V. 48, N 2. P. 103–111.
40. Antoshkin L.V., Borzilov A.G. Patent N 2695281 na izobretenie «Ustroistvo upravleniya dvuhkoordinatnym p'ezokeramicheskim opticheskim deflektorom» // Prioritet ot 13.06.2018. Registratsiya v Gosudarstvennom reestre izobretenii 22 july 2019.
41. Larichev A.V., Iroshnikov N.G. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM «Spetsializirovannoe programmnoe obespechenie dlya obrabotki izobrazhenii», versiya 13 (Shah) N 2021619024 ot 3.06.2021 year.
42. Borzilov A.G., Konyaev P.A., Lukin V.P., Soin E.L. Izmereniya parametrov atmosfery na protyazhennoi trasse. II. Opticheskie izmeriteli urovnya turbulentnosti // Optika atmosfery i okeana. 2023. V. 39, N 7. P. 557–583.
43. Notes on AMATEUR TELESCOPE OPTICS. URL: https:// www.telescope-optics.net (last access: 10.09.2022).
44. Fuhrmann T. Spherical lens aberration minimization method for short-range free-space light transmission // Opt. Engin. 2022. V. 61, N 8. P. 085101-1–18.
45. Noll R.J. Zernike polynomials and atmospheric turbulence // J. Opt. Soc. Am. 1976. V. 66, N 3. P. 207–211.
46. Lukin V.P. Trebovaniya k dinamicheskim harakteristikam sistem adaptivnoi optiki // Kvant. elektron. 2022. V. 52, N 7. P. 652–660.