Vol. 36, issue 11, article # 10

Zuev V. V., Maslennikova E. A., Saveljeva E. S., Pavlinskii A. V. Sensitivity of the Antarctic polar vortex to temperature changes in the lower subtropical stratosphere. // Optika Atmosfery i Okeana. 2023. V. 36. No. 11. P. 942–945. DOI: 10.15372/AOO20231110 [in Russian].
Copy the reference to clipboard

Abstract:

The polar vortices play a significant role in the distribution of stratospheric ozone, the movement of air masses in the polar and subpolar stratosphere, and temperature changes over the polar region. The Antarctic polar vortex forms in autumn and reaches its peak intensity in early spring. In late spring, when this vortex weakens, the influence of the lower subtropical stratosphere increases. We consider the effect of temperature changes in the lower subtropical stratosphere on the Antarctic polar vortex strengthening. Using correlation analysis and ARA5 reanalysis data, we show a significant increase in the effect of minor temperature changes in the lower subtropical stratosphere on the Antarctic polar vortex dynamics in the second half of November.

Keywords:

Antarctic polar vortex, lower subtropical stratosphere, polar ozone depletion

References:

1. Lecouffe A., Godin-Beekmann S., Pazmiño A., Hauchecorne A. Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020 // Atmos. Chem. Phys. 2022. V. 22, N 6. P. 4187–4200.
2. Solomon S. Stratospheric ozone depletion: A review of concepts and history // Rev. Geophys. 1999. V. 37, N 3. P. 275–316.
3. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000. 942 p.
4. Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole // Geophys. Res. Lett. 2004. V. 31, N 21. P. L21104.
5. Zuev V.V., Savelieva E.S. The cause of the spring strengthening of the Antarctic polar vortex // Dyn. Atmos. Ocean. 2019. V. 87. P. 101097.
6. Zuev V.V., Savelieva E.S. The cause of the strengthening of the Antarctic polar vortex during October–November periods // J. Atmos. Sol.-Terr. Phys. 2019. V. 190. P. 1–5.
7. Zuev V.V., Borovko I.V., Krupchatnikov V.N., Savelieva E.S. Vliyanie temperatury nizhnei subtropicheskoi stratosfery na dinamiku antarkticheskogo polyarnogo vixrya // Optika atmosf. i okeana. 2020. V. 33, N 5. P. 415–418; Zuev V.V., Borovko I.V., Krupchatnikov V.N., Savelieva E.S. Influence of the temperature of the lower subtropical stratosphere on antarctic polar vortex dynamics // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 708–711.
8. Kashkin V.B., Rubleva T.V., Khlebopros R.G. Stratosfernyi ozon: Vid s kosmicheskoi orbity. Krasnoyarsk: SFU, 2015. 182 p.
9. Khlebopros R.G., Kashkin V.B. Antarkticheskaya ozonovaya dyra – kto vinovat? // Nauka iz pervyx ruk. 2017. V. 73, N 1. P. 20–27.
10. Kashkin V.B., Rubleva T.V. Zonal'noe dvizhenie mass ozona v nizhnei stratosfere po sputnikovym dannym // Optika atmosf. i okeana. 2014. V. 27, N 9. P. 826–832.
11. Rubleva T.V., Kashkin V.B., Myasnikov V.M., Seliverstov S.A. Izmenchivost' polyarnogo stratosfernogo ozona YUzhnogo polushariya po sputnikovym dannym (apparatura TOMS, OMI) // Vestn. SibGAU. 2011. N 2. P. 58–62.
12. Yulaeva E., Holton J.R., Wallace J.M. On the cause of the annual cycle in tropical lower-stratospheric temperatures // J. Atmos. Sci. 1994. V. 51, N 2. P. 169–174.
13. Steinbrecht W., Hassler B., Claude H., Winkler P., Stolarski R.S. Global distribution of total ozone and lower stratospheric temperature variations // Atmos. Chem. Phys. 2003. V. 3, N 5. P. 1421–1438.
14. Savel'eva E.S. Dinamika antarkticheskogo polyarnogo vixrya vo vremya vnezapnogo stratosfernogo potepleniya v 2002 year // Optika atmosf. i okeana. 2020. V. 33, N 1. P. 50–55.
15. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz–Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis // Q. J. R. Meteor. Soc. 2020. V. 146, N 730. P. 1–51.