Vol. 36, issue 10, article # 8

Bobrovnikov S. M., Zharkov V. I., Zaitsev N. G., Trifonov D. A. Application of the combined method of photo registration in lidar temperature measurements on the primary mirror of the Siberian lidar station. // Optika Atmosfery i Okeana. 2023. V. 36. No. 10. P. 839–845. DOI: 10.15372/AOO20231008 [in Russian].
Copy the reference to clipboard


A technique for parallel registration of lidar signals in photon counting and charge accumulation modes at the Siberian lidar station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (SLS) is described in detail. A device is designed and experimentally tested for recording lidar signals with the use of the combined technique at the unique SLS lidar. During the experimental testing of the device, the limits of applicability of the technique suggested to regular measurements of the vertical distribution of air temperature based on lidar signals of purely rotational Raman spectra are determined. The comparison between the lidar and satellite measurements shows their good agreement, which proves the high efficiency of the combined technique and confirms the capability of deriving the vertical distribution of atmospheric temperature throughout the altitude range of the primary mirror of the Raman lidar of SLS.


lidar, temperature, atmosphere, Raman scattering


1. Radlach M., Behrendt A., Wulfmeyer V. Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields // Atmos. Chem. Phys. 2008. V. 8. P. 159–169.
2. Chen S., Qiu Z., Zhang Y., Chen H., Wang Y. A pure rotational Raman lidar using double-grating monochromator for temperature profile detection // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, iss. 2 P. 304–309.
3. Bobrovnikov S.M., Gorlov E.V., Trifonov D.A., Zharkov V.I. Raman lidar for measuring the temperature of the stratosphere // Proc. SPIE. 2018. V. 10833. P. 715–718.
4. Golitsyn G.S., Semenov A.I., Shefov N.N., Fishkova L.M., Lysenko E.V., Perov S.P. Long-term temperature trends in the middle and upper atmosphere // Geophys. Res. Lett. 1996. V. 23, N 14. P. 1741–1744.
5. Li Y., Lin X., Song S., Yang Y., Cheng X., Chen Z., Liu L., Xia Y., Xiong J., Gong S., Li F. A Combined rotational Raman–Rayleigh lidar for atmospheric temperature measurements over 5–0 km with self-calibration // IEEE Trans. Geosci. Remote Sens. 2016. V. 54, iss. 12. P. 7055–7065.
6. Alpers M., Eixmann R., Fricke-Begemann C., Gerding M., Höffner J. Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering // Atmos. Chem. Phys. 2004. V. 4. P. 793–800.
7. Gerding M., Höffner J., Lautenbach J., Rauthe M., Lübken F.J. Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar // Atmos. Chem. Phys. 2008. V. 8, N 24. P. 7465–7482.
8. Yu C., Yi F. Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements // J. Atmos. Sol.-Terr. Phys. 2008. V. 70, N 10. P. 1281–1288.
9. Vaughan G., Wareing D.P., Pepler S.J., Thomas L., Mitev V. Atmospheric temperature measurements made by rotational Raman scattering // Appl. Opt. 1993. V. 32, N 15, P. 2758–2764.
10. Behrendt A., Reichardt J. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator // Appl. Opt. 2000. V. 39, N 9. P. 1372–1378.
11. Nedeljkovich D., Hauchecorne A., Chanin M.L. Rotational Raman lidar to measure temperature from the groung to 30 km // IEEE Trans. Geosci. Remote Sens. 1993. V. 31, N 1. P. 90–101.
12. Jingyu Jia, Fan Yi. Atmospheric temperature measurements at altitudes of 5–30 km with a double-grating-based pure rotational Raman lidar // Appl. Opt. 2014. V. 53, N 24. P. 5330–5343.
13. Von Zahn U., von Cossart G., Fiedler J., Fricke K.H., Nelke G., Baumgarten G., Rees D., Hauchecorne A., Adolfsen K. The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance // Ann. Geophys. 2000. V. 18, iss. 7. P. 815–833.
14. Schoch A., Baumgarten G., Fiedler J. Polar middle atmosphere temperature climatology from Rayleigh lidar measurements at ALOMAR (69° N) // Ann. Geophys. 2008. V. 26, N 7. P. 1681–1698.
15. Bobrovnikov S.M., Gorlov E.V., Trifonov D.A., Zharkov V.I. Lidar complex for measuring the atmospheric temperature at the Siberian lidar station // Proc. SPIE. 2019. V. 11208. P. 112083S-1–6.
16. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Trifonov D.A. Metodika yustirovki i otsenka razmera kruzhka rasseyaniya glavnogo zerkala Sibirskoy lidarnoy stantsii // Optika atmosf. i okeana. 2020. V. 33, N 7. P. 559–564; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Trifonov D.A. Alignment technique and quality check of the primary mirror of the Siberian Lidar Station // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 696–701. DOI: 10.1134/S1024856020060081.
17. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Struktura turbulentnykh dvizheniy vozdukha v shakhte glavnogo zerkala Sibirskoy lidarnoy stantsii IOA SO RAN. Eksperiment i chislennoe modelirovanie // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 905–910. DOI: 10.15372/AOO20161102.
18. Mironov A.V. Osnovy astrofotometrii. Prakticheskie osnovy fotometrii i spektrofotometrii zvezd. M.: Fizmatlit, 2008. 260 p.
19. Donovan D.P., Whiteway J.A., Carswell A.I. Correction for nonlinear photon-counting effects in lidar systems // Appl. Opt. 1993. V. 32, N 33. P. 6742–6753.
20. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Zaitsev N.G., Nadeev A.I., Trifonov D.A. Evaluation of efficiency of the combined LIDAR signal photodetection technique // Proc. SPIE. 2020. V. 11560. P. 659–664.
21. Bobrovnikov S.M., Zharkov V.I., Zaitsev N.G., Nadeev A.I., Trifonov D.A. Photon counting system with automated detection and selection of photodetector discrimination thresholds // Proc. SPIE. 2022. V. 12341. P. 392–396.
22. Krivolutsky A.A., Repnev A.I., Mironova I.A., Gruzdev A.N., Tuniyants T.I. Rezul'taty rossiyskikh issledovaniy sredney atmosfery v 2015–2018 years // Izv. RAN. Fiz. atmosf. i okeana. 2019. V. 55, N 6. PC. 48–65.
23. Li Y., Lin X., Yang Y., Xia Y., Xiong J., Song S., Liu L., Chen Z., Cheng X., Li F. Temperature characteristics at altitudes of 5–80 km with a self-calibrated Rayleigh – rotational Raman lidar: A summer case study // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 188. P. 94–102.
24. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues // J. Geophys. Res.: Space Phys. 2002. V. 107(A12). P. SIA15-1–16.
25. Schwartz M.J., Lambert A., Manney G.L., Read W.G., Livesey N.J., Froidevaux L., Ao C.O., Bernath P.F., Boone C.D., Cofield R.E., Daffer W.H., Drouin B.J., Fetzer E.J., Fuller R.A., Jarnot R.F., Jiang J.H., Jiang Y.B., Knosp B.W., Krüger K., Li J.-L.F., Mlynczak M.G., Pawson S., Russell III J.M., Santee M.L., Snyder W.V., Stek P.C., Thurstans R.P., Tompkins A.M., Wagner P.A., Walker K.A., Waters J.W., Wu D.L. Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements // J. Geophys. Res.: Atmospheres. 2008. V. 113. N D15.
26. Chernigovskaya M.A. Vremennye variatsii temperatury sredney atmosfery nad regionom yuga Vostochnoy Sibiri po sputnikovym dannym MLS Aura // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2013. V. 10, N 2. P. 212–224.
27. URL: https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/MLS/V04/L2GPOVP_Prof/Temp/Tomsk/ (data obrashcheniya: 18.09.2022).
28. Remsberg E.E., Marshall B.T., Garcia-Comas M., Krueger D., Lingenfelser G.S., Martin-Torres J., Mlynczak M.G., Russell III J.M., Smith A.K., Zhao Y., Brown C., Gordley L.L., Lopez-Gonzalez M.J., Lopez-Puertas M., She C.-Y., Taylor M.J., Thompson R.E. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER // J. Geophys. Res.: Atmospheres. 2008. V. 113. N D17.
29. URL: http://saber.gats-inc.com/coin.php (data obrashcheniya: 18.09.2022).