Vol. 36, issue 09, article # 9

Bol'basova L. A., Ermakov S. A., Lukin V. P. Simulation of sodium LGS return flux formed by polarized light for astronomical observatories of the North Caucasus. // Optika Atmosfery i Okeana. 2023. V. 36. No. 09. P. 773–779. DOI: 10.15372/AOO20230909 [in Russian].
Copy the reference to clipboard


The results of numerical simulation of the return flux from a sodium laser guide star for atmospheric conditions of astronomical observatories of the North Caucasus are presented. The simulation was performed in accordance with modern concepts of the physics of the interaction of polarized laser radiation with mesospheric sodium atoms. Two cases are considered: the formation of an artificial reference source by laser radiation with circular and linear polarizations. The limitations of the photon flux due to the saturation effect are estimated.



laser guide star, adaptive optics, atmospheric turbulence


1. Milonni P.W., Fearn H., Telle J.M., Fugate R.Q. Theory of continuous wave excitation of the sodium beacon // J. Opt. Soc. Am. A. 1999. V. 16. P. 2555–2566.
2. Li Lihang, Hongyan Wang, Weihong Hua, Yu Ning, Xiaojun Xu. Fluorescence enhancing mechanism of optical repumping in sodium atoms for brighter laser guide star // Opt. Express. 2016. V. 24. P. 6976–6984.
3. Fan T., Zhou T., Feng Y. Improving sodium laser guide star brightness by polarization switching // Nat. Sci. Report. 2016. V. 6. P. 19859-1–6.
4. Xuezong Yang, Lei Zhang, Shuzhen Cui, Tingwei Fan, Jinyan Dong, Yan Feng. Sodium guide star laser pulsed at Larmor frequency // Opt. Lett. 2017. V. 42, N 21. P. 4351.
5. Pedreros Bustos F., Holzlöhner R., Rochester S., Bonac-cini Calia D., Hellemeier J., Budker D. Frequency chirped continuous-wave sodium laser guide stars: Modeling and optimization // J. Opt. Soc. Am. B. 2020. V. 37. P. 1208–1218.
6. Morris J.R. Efficient excitation of a mesospheric sodium laser guide star by intermediate-duration pulses // J. Opt. Soc. Am. A. 1994. V. 11. P. 832–845.
7. Drummond J.D., Telle J.M., Denman C.A., Hillman P.D., Spinhirne J.M., Christou J.C. Sky tests of a laser-pumped sodium guidestar with and without beam compensation // Proc. SPIE. 2004. V. 5490. P. 12–22.
8. Drummond J., Telle J., Denman C., Hillman P., Tuffli A. Photometry of a sodium laser guide star at the starfire optical range // PASP. 2004. V. 116, N 817. P. 278–289.
9. Moussaoui N., Holzlöhner R., Hackenberg W., Bonaccini Calia D. Dependence of sodium laser guide star photon return on the geomagnetic field // A&A. 2009. V. 501, N 2. P. 793–79.
10. Holzlöhner R., Rochester S.M., Bonaccini Calia D., Budker D., Higbie J.M., Hackenberg W. Optimization of CW sodium laser guide star efficiency // A&A. 2010. V. 510. P. A20-1–14.
11. Rochester S.M., Otarola A., Boyer C., Budker D., Ellerbroek B., Holzlöhner R., Wang L. Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project // J. Opt. Soc. Am. B. 2012. V. 29. P. 2176–2188.
12. Hong-Yang Li, Lu Feng, Jian-Li Wang, Jie Liu, Sui-Jian Xue, Zhi-Xia Shen. Simulation study of on sky performance of a new 20 W class macro–micro pulse laser for sodium laser guide star // PASP. 2021. V. 133, N 1021.
13. Hellemeier J., Enderlein M., Hager M., Bonaccini Calia D., Johnson R.L., Lison F., Byrd M.O., Kann L.A., Centrone M., Hickson P. Laser guide star return-flux gain from frequency chirping // MNRAS. 2022. V. 511, N 3. P. 4660–4668.
14. Holzlöhner R., Bonaccini D., Bello D., Budker D., Centrone M., Guidolin I., Hackenberg W., Lewis S., Lombardi G., Montilla I., Pedichini F., Pedreros Bustos F., Pfrommer T., Reyes Garcia Talavera M., Rochester S. Comparison between observation and simulation of sodium LGS return flux with a 20 W CW laser on Tenerife // Proc. SPIE. 2016. V. 9909 P. 99095E.
15. WMM: World Magnetic Model. URL: https: // ngdc.noaa.gov/geomag / WMM / DoDWMM.shtml (last access: 20.02.2022).
16. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities. URL: https:// kauai.ccmc.gsfc.nasa.gov/instantrun/msis (last access: 20.02.2022).
17. HWM: Horizontal Wind Model. URL: https://www. alpendac.eu/vao/hwm (last access: 20.02.2022).
18. Bolbasova L., Lukin V., Ermakov S., Soin E. The problem of measuring the global tilt from laser guide star // Proc. SPIE. 2022. V. 12341. P. 123410X-1–5.
19. Rochester S.M. Atomic Density Matrix package for Mathematica. URL: http://budker.berkeley.edu/ADM/ (last access: 20.02.2022).
20. Matvienko G.G., Marichev V.N., Bobrovnikov S.M., Yakovlev S.V., Chistilin A.Yu., Sautkin V.A. Mezostratosfernyy lidar dlya geliogeofizicheskogo kompleksa // Solnechno-zemnaya fizika. 2020. V. 6, N 2. P. 93–104.