Vol. 36, issue 09, article # 8

Zinoviev M. M., Kuznetsov V. S., Yudin N. N., Podzyvalov S. N., Slyunko E. S., Lysenko A. B., Kalsin A. Yu., Vlasov D. V., Cheremis M. A. Dielectric polarizing mirror for OPO systems in the mid-IR range. // Optika Atmosfery i Okeana. 2023. V. 36. No. 09. P. 763-772. DOI: 10.15372/AOO20230908 [in Russian].
Copy the reference to clipboard

Abstract:

A polarization dielectric mirror on a ZnSe substrate is created for laser systems in the mid-IR range. The film periodic structure was calculated using the Optilayer software. Zinc sulfide (ZnS) and ytterbium fluoride (YbF3) were used as materials for the interference coating. The optical parameters of the materials used are determined in a wide spectral range. The interference coating of the structure calculated was deposited onto the substrate by the ion-beam sputtering method. The threshold value for laser-induced breakdown of a dielectric mirror by Ho:YAG laser radiation with a wavelength of 2.097 mm was obtained, which was 4 J/cm2 at a pulse repetition rate of 10 kHz and a pulse duration at half-height of 30 ns. The mirror was tested in an OPO system based on a ZnGeP2 single crystal; the conversion efficiency obtained with this mirror reaches 30%.
 

Keywords:

dielectric mirror, optical parametric oscillator, substrate, mid-IR range, ZnSe, ZnGeP2

References:

1. Yakovin M.D., Chapovskiш P.L. Nepreryvnyy para¬metricheskiy generator sveta dlya sredney IK-oblasti // Kvant. elektron. 2022. М. 52, Т 6. З. 549–554.
2. Żendzian W., Jabczyński J., Wachulak P., Kwiatkowski J. High-repetition-rate, intracavity-pumped KTP OPO at 1572 nm // Appl. Phys. B. 2005. V. 80. P. 329–332.
3. Wu R., Lai K., Wong H., Xie W., Lim Y., Lau E. Multiwatt mid-IR output from a Nd:YALO laser pumped intracavity KTA OPO // Opt. Express. 2001. V. 8. P. 694–698.
4. Henriksson M., Tiihonen M., Pasiskevicius V., Laurell F. Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator // Appl. Phys. B. 2007. V. 88. P. 37–41.
5. Kolker D.B., Boшko A.A., Dukhovnikova N.Yu., Ze¬nov K.G., Sherstov I.V., Starikova M.K., Miroshnichenko I.B., Miroshnichenko M.B., Kashtanov D.A., Kuznetsova I.B., Shtyrov M.YU., Zachariadis S., Karapuzikov A.I., Karapuzikov A.A., Lokonov V.N. Parametricheskiy generator sveta na osnove periodicheskikh struktur niobata litiya s plavnoy perestroykoy dliny volny izlucheniya // Pribory i tekhnika eksperimenta. 2014. N 1. P. 85–89.
6. Wang L., Xing T., Hu S., Wu X., Wu H., Wang J., Jiang H. Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7% // Opt. Express. 2017. V. 25. P. 3373–3380.
7. Chandra S., Allik T.H., Hutchinson J.A., Utano R., Catella G. OPO performance in the 6–14 mm band from 1.57 mm pumped AgGaSe2 // Adv. Sol. State Lasers. 1997. V. 10. P. PC12.
8. Andreev S.A., Andreeva N.P., Barashkov M.S., Ba¬dikov V.V., Demkin V.K., Don A.K., Yepikhin V.M., Krymskii M.I., Kalinnikov YU.K., Mitin K.V., Seregin A.M., Sinaiskii V.V., Talalaev M.A., Chistyakov A.A., Shchebetova N.I., Shchetinkina T.A. Issledovaniye sposobov perestroyki parametricheskikh generatorov sveta vidimogo i IK-diapazonov // Kvant. elektron. 2010. V. 40, N 4. P. 288–295.
9. Romanovskii O.A. Metodika i rezul'taty poiska informativnykh dlin voln zondirovaniya gazovykh komponent atmosfery // Prikl. fiz. 2009. N 1. P. 24–31.
10. Soldatov A.N., Bochkovskii D.A., Vasil'eva A.V., Matvienko G.G., Polunin Yu.P., Romanovskii O.A., Kharchenko O.V., Yudin N.A., Yakovlev S.V. Primeni¬most' lazera na parakh strontsiya dlya resheniya zadach lazernogo zondirovaniya gazovogo sostava atmosfery // Optika atmosf. i okeana. 2011. V. 24, N 11. P. 985–989.
11. Shigapov A.B., Yarkhamov Sh.D. K opredeleniyu razme¬rov dispersnykh chastits putem izmeneniya parametrov rasseyannogo izlucheniya // Izv. vuzov. Aviatsionnaya tekhnika. 2004. N 4. P. 58–60.
12. Polovchenko S.V., Chartiy P.V. Vosstanovleniye funk¬tsii raspredeleniya chastits po razmeram s ispol'zova¬niyem metodov lazernogo zondirovaniya // Bez¬opasnost' v tekhnosfere. 2014. V. 3, N 6. P. 37–42.
13. Vanyakin A.V., Zheleznov V.I., Kulevskii L.A., Lukashev A.V., Morozov N.P., Orlov N.A. Interferentsionnaya optika dlya lazerov i parametricheskikh generatorov srednego IK-diapazona // Kvant. elektron. 1997. V. 24, N 2. P. 142–144.
14. Telesh Ye.V., Kasinskii N.K., Tomal' V.S. Formiro¬vaniye pokrytiy ionno-luchevym raspyleniyem dielektricheskikh misheney // Vestn. Polots. gos. un-ta. Ser. S. 2012. N 4. P. 70–76.
15. Liu H., Jensen L., Becker J., Wurz M.C., Ma P., Ristau D. Comparison of ALD and IBS Al2O3 films for high power lasers // Proc. SPIE 2016. Р. 1001421.
16. Zinc selenide (CVD-ZnSe). URL: https://www. tydexoptics.com/ru/materials / for_transmission_optics/ cvd_znse/ (last access: 15.06.2023).
17. Cosar M.B., Aydogdu G.H., Batman H., Ozhan A.E.S. A solution to adhesion problem of oxide thin films on zinc selenide optical substrates // Surf. Coat. Technol. 2017. V. 314. P. 118–124.
18. Zhang J., Sun D.G., Fu X.H., Liu D.M. Study and fabrication of multi-band filter film on ZnS substrate // KEM. 2013. V. 552. P. 147–151.
19. Kennedy J., Murmu P.P., Gupta P.S., Carder D.A., Chong S.V., Leveneur J., Rubanov S. Effects of annealing on the structural and optical properties of zinc sulfide thin films deposited by ion beam sputtering // Mater. Sci. Semicond. Process. 2014. V. 26. P. 561–566.
20. Goswami A., Goswami A.P. Dielectric and optical properties of ZnS films // Thin Solid Films. 1973. V. 16, № 2. P. 175–185.
21. Amotchkina T., Trubetskov M., Hahner D., Pervak V. Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings // Appl. Opt. 2020. V. 59. P. A40–A47.
22. Zhang Y., Zhang K., Huang W., Xiong S. Determination of infrared refractive index of ZnS and YbF3 thin films by spectroscopy // Optik. 2018. V. 170. P. 321–327.
23. GOST R ISO 9211-4-2016. Optika i opticheskiye pribory. Pokrytiya opticheskiye. Chast' 4. Spetsial'nyye metody ispytaniy.
24. The R-on-1 Test // Lidaris LIDT Service, 2019. URL: https: // lidaris.com / laser-damage-testing / r-on-1-test (last access: 5.02.2023).
25. Yudin N.N., Podzyvalov S.N., Zinov'yev M.M. Energeticheskiye kharakteristiki parametricheskogo generatora na baze nelineynogo kristalla ZnGeP2 dlya lidarnykh sistem i distantsionnogo gazoanaliza // Izv. vuzov. Fizika. 2019. V. 62, N 12. P. 197–198.