Vol. 36, issue 09, article # 7

Sinitsa L. N., Chesnokova T. Yu. Analysis of water vapor absorption lines in the modern spectroscopic databases in the 16700–17000 cm-1 region. // Optika Atmosfery i Okeana. 2023. V. 36. No. 09. P. 754-762. DOI: 10.15372/AOO20230907 [in Russian].
Copy the reference to clipboard

Abstract:

The validation of H2O absorption lines parameters in the modern spectroscopic databases such as
HITRAN2016, HITRAN2020, GEISA2020, and W2020 database of H2O lines is carried out in the visible region 16700–17000 cm-1. The H2O transmission spectra were simulated with the spectroscopic databases and compared with laboratory spectra of pure water vapor and H2O–N2 mixture (P = 1 atm), recorded using a Fourier spectrometer with light-emitting diodes of high luminance. The parameters of 65 H2O absorption lines from HITRAN2020 database were corrected on the basis of the measurements. The positions of 32 lines, intensities of 51 lines, and self-broadening coefficients of 10 lines were improved. The ratio of the HITRAN2020 broadening coefficients to the experimental values is close to 1, whereas the air pressure-induced line shift coefficients in the spectroscopic databases are, on average, two times higher than the experimental values, and therefore, our previously obtained experimental values of N2 pressure-induced line shift coefficients were used to simulate the transmission spectra of H2O–N2 mixture.
The difference of the experimental spectra from the spectra calculated with HITRAN2016, HITRAN2020, GEISA2020, and W2020 spectroscopic databases and corrected HITRAN2020cor gives root-mean-square deviations RMS = 1.49E-4, 1.64E-4, 3.96E-4, 3.49E-4, and 1.26E-4 in the case of pure water vapor and RMS = 1.15E-4, 1.1E-4, 2.23E-4, 2.28E-4, and 0.86E-4 for H2O–N2 mixture, respectively.
 

Keywords:

absorption spectrum, water vapor, spectroscopic databases, absorption line parameters, transmittance

References:

1. Fally S., Coheur P.-F., Carleer M., Clerbaux C., Colin R., Jenouvrier A., Mérienne M.-F., Hermans C., Vandaele A.C. Water vapor line broadening and shifting by air in the 26000–13000 cm-1 region // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 82. P. 119–131.
2. Serdyukov V.I., Sinitsa L.N., Vasilchenko S.S., Lav­rentieva N.N., Dudaryonok A.S., Scherbakov A.P. Stu­dy of Н2О line broadening and shifting by N2 pressure in the 16,600–17,060 cm-1 region using FT-spectrometer with LED source // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 219. P. 213–223. DOI: 10.1016/j.jqsrt.2018. 08.014.
3. Mikhailenko S., Serdyukov V., Sinitsa L. Study of H216O and H218O absorption in the 16460–17200 cm-1 range using LED-based Fourier transform spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 217. P. 170–177. DOI: 10.1016/j.jqsrt. 2018.05.032.
4. Furtenbacher T., Tóbiás R., Tennyson J., Polyan­sky O.L., Kyuberis A.A., Ovsyannikov R.I., Zobov N.F., Császár A.G. The W2020 database of validated rovibrational experimental transitions and empirical energy levels of water isotopologues. II. H217O and H218O with an update to H216O // J. Phys. Chem. Ref. Data. 2020. V. 49. P. 043103.
5. Polyansky O.L, Kyuberis A.A., Zobov N.F., Tenny­son J., Yurchenko S.N., Lodi L. ExoMol molecular line lists XXX: A complete high-accuracy line list for water // Mon. Not. Roy. Astron. Soc. 2018. V. 480, N 2. P. 2597–2608.
6. Conway E.K., Gordon I.E., Kyuberis A.A., Polyan­sky O.L., Tennyson J., Zobov N.F. Calculated line lists for H216O and H218O with extensive comparisons to theoretical and experimental sources including the HITRAN2016 database // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 241. P. 106711.
7. Gordon E., Rothman L.S., Hill C., Kochanov R.V., Tana Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T, Jacquemart D., Pereva­lov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyu­lin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Vander Auwera J., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69.
8. Borger C., Beirle S., Dörner S., Sihler H., Wagner T. Total column water vapour retrieval from S-5P/ TROPOMI in the visible blue spectral range // Atmos. Meas. Tech. 2020. V. 13, N 5. P. 2751–2783. DOI: 10.5194/amt-13-2751-2020.
9. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashe­mi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finen­ko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Pereva­lov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/ j.jqsrt.2021.107949.
10. Furtenbacher T., Tóbiás R., Tennyson J., Polyansky O.L., Császár A.G. W2020: A Database of validated rovibrational experimental transitions and empirical energy levels of H216O // J. Phys. Chemi. Ref. Data. 2020. V. 49. P. 033101.
11. Bubukina I.I., Zobov N.F., Polyanskii O.L., Shi¬rin S.V., Yurchenko S.N. Optimizirovannaya polu¬empiricheskaya poverkhnost' potentsial'noy energii H216O do 26000 sm–1 // Opt. i spektroskop. 2011. V. 110, N 2. P. 186–193.
12. Tolchenov R.N., Naumenko O., Zobov N.F., Shi­rin S.V., Polyansky O.L., Tennyson J., Carleer M., Coheur P.-F., Fally S., Jenouvrier A., Vandaele A.C. Water vapour line assignments in the 9250–26000 cm-1 frequency range // J. Mol. Spectrosc. 2005. V. 233. P. 68–76.
13. Tennyson J., Bernath P.F., Brown L.R., Campague A., Császár A.G., Daumont L., Gamache R.R., Hodges J.T., Naumenko O.V., Polyansky O.L., Roth­man L.S., Vandaele A.C., Zobov N.F., Al Derzi A.R., Fabri C., Fazliev A.Z., Furtenbacher T., Gordon I.E., Lodi L., Mizus I.I. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, part III: Energy levels and transition wavenumbers for H216O// J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 117. P. 29–58. DOI: 10.1016/j.jqsrt.2012.10.002.
14. Antony B.K., Neshyba S., Gamache R.R. Self-broadening of water vapor transitions via the complex Robert–Bonamy theory // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 105. P. 148–163.
15. Jacquemart D., Gamache R.R., Rothman L.S. Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines // J. Quant. Spectrosc. Radiat. Transfer. 2005. V. 96. P. 205–239.
16. Gamache R.R., Laraia A.L. N2-, O2-, and air-broadened half-widths, their temperature dependence, and line shifts for the rotation band of H216O, calculations redone at 20 4 4 order // J. Mol. Spectrosc. 2009. V. 257. P. 116–127.
17. Delahaye T., Armante R., Scott N.A., Jacquinet-Hus­son N., Chédin A., Crépeau L., Crevoisier C., Douet V., Perrin A., Barbe A., Boudon V., Campargue A., Coudert L.H., Ebert V., Flaud J.-M., Gamache R.R., Jacquemart D., Jolly A., Kwabia Tchana F., Kyube­ris A., Li G., Lyulin O.M., Manceron L., Mikhai­lenko S., Moazzen-Ahmadi N., Müller H.S.P., Nau­menko O.V., Nikitin A., Perevalov V.I., Richard C., Starikova E., Tashkun S.A., Tyuterev Vl.G., Vander Auwera J., Vispoel B., Yachmenev A., Yurchenko S. The 2020 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2021. V. 380. P. 111510. DOI: 10.1016/j.jms.2021.111510.
18. Serdyukov V.I., Sinitsa L.N. New features of an FT spectrometer using LED sources // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 177. P. 248–252. DOI: 10.1016/j.jqsrt.2016.01.002.
19. Kruglova T.V, Shcherbakov A.P. Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines // Opt. Spectrosc. 2011. V. 111. P. 353–356.
20. Mitsel' A.A., Ptashnik I.V., Firsov K.M., Fo¬min B.A. Effektivnyy metod polineynogo scheta propuskaniya pogloshchayushchey atmosfery // Optika atmosf. i okeana. 1995. V. 8, N 10. P. 1547–1551.
21. Voronin B.A., Lavrentieva N.N., Mishina T.P., Chesnokova T.Yu., Barber M.J., Tennyson J. Estimate of the JJ″-dependence of water vapor line broadening parameters // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2308–2314.
22. Compilations from Geoffrey Toon (JPL). URL: http: //mark4sun.jpl.nasa.gov/toon/linelist/linelist.html (last access: 10.03.2023).
23. Toon G.C., Blavier J.-F., Keeyoon Sung, Roth­man L.S., Gordon I.E. HITRAN spectroscopy evaluation using solar occultation FTIR spectra // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 182. P. 324–336.
24. Frankenberg C., Warneke T., Butz A., Aben I., Hase F., Spietz P., Brown L.R. Pressure broadening in the 2n3 band of methane and its implication on atmospheric retrievals // Atmos. Chem. Phys. 2008. V. 8. P. 5061–5075.
25. Toth R.A. Air- and N2-broadening parameters of water vapor: 604 to 2271 cm-1 // J. Mol. Spectrosc. 2000. V. 201. P. 218–243.