Vol. 36, issue 09, article # 1

Geints Yu. E., Panina E. K. Peculiarities of photonic nanojet formation on a spherical cluster of dielectric nanoparticles. // Optika Atmosfery i Okeana. 2023. V. 36. No. 09. P. 705-710. DOI: 10.15372/AOO20230901 [in Russian].
Copy the reference to clipboard


The results of the numerical simulations on optical radiation focusing by a cluster of identical nanospheres densely packed into a spherical volume (a “metaparticle”) are presented. The parameters of the focal region
(intensity, longitudinal and transverse dimensions) formed by metaparticles with different internal structure are calculated. We show that in certain cases, the problem of focusing optical radiation by a globular cluster
of nanoparticles can be reduced to the problem of light focusing by a homogeneous spherical particle with an effective refractive index obtained from the effective medium theory. Moreover, certain globular cluster topologies make it possible to improve the optical focusing in the near-field region, in particular, by increasing the focal intensity or enhancing the spatial localization of the focal area.


particle cluster, close packing, photonic nanojet, effective medium approximation, FDTD simulation



  1. Chen Z., Taflove A., Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique // Opt. Express. 2004. V. 12, N 7. Р. 1214–1220.
  2. Devilez A., Bonod N., Stout B., Gerard D., Wenger J., Rigneault H., Popov E. Three-dimensional subwavelength confinement of light with dielectric microspheres // Opt. Express. 2009. V. 17. P. 2089–2094.
  3. Geints Y.E., Panina E.K., Zemlyanov A.A. Control over parameters of photonic nanojets of dielectric microspheres // Opt. Commun. 2010. V. 283. P. 4775–4781.
  4. Maděránková D., Provazník I., Klepárník K. Numerical modeling of photonic nanojet behind dielectric microcylinder // World Congress on Medical Physics and Biomedical Engineering September 7–12, 2009. / O. Dössel, W.C. Schlegel (ed.). Munich: Springer, 2009. Р. 1135–1138. DOI: 10.1007/978-3-642-03882-2_302.
  5. Geints Yu.E., Panina E.K., Zemlyanov A.A. Microaxicon-generated photonic nanojets // J. Opt. Soc. Am. B. 2015. V. 32, N 8. P. 1570–1574.
  6. McCloskey D., Wang J.J., Donegan J.F. Low divergence 354 photonic nanojets from Si3N4 microdisks // Opt. Express. 2012. V. 20. P. 128–140.
  7. Mendes M.J., Tobías I., Martí A., Luque A. Near-field scattering by dielectric spheroidal particles with sizes on the order of the illuminating wavelength // J. Opt. Soc. Am. B. 2010. V. 27, N 6. P. 1221–1231.
  8. Minin I.V., Minin O.V., Geints Yu.E. Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review // Ann. Phys. 2015. V. 527, N 7. P. 1–7.
  9. Kong S.-C., Taflove A., Backman V. Quasi one-dimen- sional light beam generated by a graded-index microsphere // Opt. Express. 2009. V. 17. P. 3722–3731.
  10. Geints Yu.E., Zemlyanov A.A., Panina E.K. A photonic nanojet calculations in layered radially-inhomogeneous micrometer-sized spherical particles // J. Opt. Soc. Am. B. 2011. V. 28, N 8. P. 1825–1830.
  11. Wang Z.B., Guo W., Lukyanchuk B., Whitehead D.J., Li L., Liu Z. Optical near-field interaction between neighbouring micro/nano-particles // J. Laser Micro/ Nanoeng. 2008. V. 3, N 1. P. 14–18.
  12. Pikulin A., Afanasiev A., Agareva N., Alexandrov A.P., Bredikhin V., Bityurin N. Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres // Opt. Express. 2012. V. 20. P. 9052–9057.
  13. Geints Yu.E., Zemlyanov A.A. Metalens optical 3D-trapping and manipulating of nanoparticles // J. Opt. 2018. V. 20, N 7. P. 1–7. DOI: 10.1088/2040-8986/ aac643.
  14. Heifetz A., Simpson J.J., Kong S.-C., Taflove A., Back- man V. Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere // Opt. Express. 2007. V. 15, N 25. P. 17334–17342.
  15. Devilez A., Bonod N., Stout B., Gerard D., Wenger J., Rigneault H., Popov E. Three-dimensional subwavelength confinement of light with dielectric microspheres // Opt. Express. 2009. V. 17, N 4. P. 2089–2094.
  16. Yang H., Trouillon R., Huszka G., Gijs M.A.M. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet // Nano Lett. 2016. V. 16, N 8. P. 4862–4870.
  17. Li Y.C., Xin H.B., Lei H.X., Liu L.L., Li Y.Z., Zhang Y., Li B.J. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet // Light: Sci. Appl. 2016. V. 5, N 12. P. e16176.
  18. Jacassi A., Tantussi F., Dipalo M., Biagini C., Maccaferri N., Bozzola A., De F. Angelis Scanning probe photonic nanojet lithography ACS // Appl. Mater. Interfaces. 2017. V. 9, N 37. P. 32386–32393.
  19. Kovrov A., Novitsky A., Karabchevsky A., Shalin A.S. A photonic nanojet as tunable and polarization-sensitive optical tweezers // Ann. Phys. 2018. V. 530, N 9. P. 1800129.
  20. Ma B., Liu Z.W. A super resolution metalens with phase compensation mechanism // Appl. Phys. Lett. 2010. V. 96. P. 183103.
  21. Sun Z., Kim H.K. Refractive transmission of light and beam shapingwith metallic nano-optic lenses // Appl. Phys. Lett. 2004. V. 85, N 4. P. 642–644.
  22. Verslegers L., Catrysse P.B., Yu Z., White J.S., Barnard E.S., Brongersma M.L., Fan S. Planar lenses based on nanoscale slit arrays in a metallic film // Nano Lett. 2009. V. 9, N 1. P. 235–238.
  23. Ma B., Escobar M.A., Liu Z.W. Extraordinary light focusing and Fourier transform properties of gradient-index metalenses // Phys. Rev. B. 2011. V. 84. P. 195142.
  24. Ma H.F., Wang G.Z., Jiang W.X., Cui T.J. Independent control of differently-polarized waves using anisotropic gradient-index metamaterials // Sci. Rep. 2014. V. 4. P. 6337.
  25. Yue L., Yan B., Wang Z. Photonic nanojet of cylindrical metalens assembled by hexagonally arranged nanofibers for breaking the diffraction limit // Opt. Lett. 2016. V. 41, N 7. P. 1336.
  26. Liu C.-Y. Flexible photonic nanojet formed by cylindrical graded-index lens // Crystals. 2019. V. 9, N 4. P. 198.
  27. Yee K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media // IEEE Trans. Antennas Propag. 1966. V. 14, iss. 3. P. 302–307.
  28. Taflove A., Hagness S. Computational electrodynamics: The finite-difference time-domain method. Boston: Arthech House Pub., 2000. 852 p.
  29. Bruggeman D.A.G. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen Dielektrizitatskonstanten und Leitfahigkeiten der Mis- chkorper aus Isotropen Substanzen // Ann. Phys. 1935. V. 416. P. 636–664.
  30. Apresyan L.A., Vlasov D.V., Zadorin D.A., Krasovskii V.I. O modeli effektivnoj sredy dlya chasticz so slozhnoi strukturoi // Zhurn. Tekhn. Fiz. 2017. V. 87, N 1. P. 10–17.