Vol. 36, issue 08, article # 8

Zenov K. G., Karapuzikov A. I., Miroshnichenko M. B., Nehorosheva E. G. Optimization of the spectral composition of radiation from a compact CO2 laser for an optoacoustic gas analyzer of SF6. // Optika Atmosfery i Okeana. 2023. V. 36. No. 08. P. 681–686. DOI: 10.15372/AOO20230808 [in Russian].
Copy the reference to clipboard

Abstract:

A simplified mathematical model and the results of experimental studies on the spectral composition of radiation from a compact waveguide CO2 laser with RF excitation for a laser opto-acoustic gas analyzer are presented. The aim is to improve measurement accuracy by eliminating unwanted 10R-branch lines from the laser spectrum. Laser radiation signatures are measured under various resonator and active medium parameters without the use of additional selection elements. It is demonstrated that optimal signatures can be achieved by selecting the appropriate pressure of the gas mixture, the transmittance coefficient of the output mirror, and the optimal resonator length, which can be obtained by varying the nominal (base) length within a range of 2 mm. The effectiveness of optimizing the spectral composition of laser radiation is practically confirmed by statistical results for 64 lasers. The open up new possibilities for improving the measurement accuracy of SF6 laser opto-acoustic gas analyzers and extending its application in various fields of science and technology.

Keywords:

CO2 laser, stabilization, gas analysis, signature, wavelength selection, mid-infrared range

References:

1. Cox D.M., Gnauck A. Continuous-wave CO2 laser spectroscopy of SF6, WF6, and UF6 // J. Mol. Spectrosc. 1980. V. 81, N 1. P. 207–215. DOI: 10.1016/0022- 2852(80)90338-0.
2. Sherstov I.V., Vasiliev V.A. Highly sensitive Laser Photo-acoustic SF6 gas analyzer with 10 decades dynamic range of concentration measurement // Infrared Phys. Technol. 2021. V. 119. P. 103922. DOI: 10.1016/j.infrared.2021.103922.
3. Sherstov I.V., Vasil'ev V.A., Karapuzikov A.I., Zenov K.G., Pustovalova R.V. Snizhenie energopotrebleniya lazernogo optiko-akusticheskogo gazoanalizatora SF6 // Pribory i tekhnika eksperimenta. 2018. N 4. P. 117–124.
4. Plinski E.F., Wojaczek D.A., Witkowski J.S., Izworski A. The information system in investigations of the laser signature phenomenon // Proc. Institute of Tecommunications and Acoustics; Institute of Engineering Cybernetics, Wroclaw University of Technology. 2005. V. 27. P. 50–370. URL: http://www.dgao-proce­edings.de.
5. Schiffner G. Prediction of CO2 laser signatures // IEEE J. Quant. Electron. 1972. V. 8. P. 877.
6. Waksberg A.L., Boag J.C., Sizgoric S. Signature variations with mirror separation for small sealed CO2 lasers // IEEE J. Quant. Electron. 1971. V. 7. P. 29–35.
7. Wang J.H.S., Paranto J.N. RF-pumped infrared using transverse gas flow // J. Quant. Electron. 1984.  V. 20. P. 284288.